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We show that the multigrid algorithms of Brandt can be adapted to
solve linear complementarity problems arising from free boundary problems. E
The multigrid algorithms are significantly faster than previous algorithms. 1
Using the multigrid algorithms, which are simple modifications of multigrid
algorithms for equalities, it is possible to solve the difference equations i

to within truncation error using less work than the equivalent of six

Gauss—-Seidel sweeps on the finest grid.
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SIGNIFICANCE AND EXPLANATION

Several free boundary problems, (including: saturated-unsaturated
flow through porous dams; elastic-plastic torsion; and cavitating journal
bearings) can be formulated as linear complementarity problems of the
following type. Find a non-negative function u which satisfies pre-
scribed boundary conditions on a given domain and which, furthermore,
satisfies a linear elliptic equation at each point of the domain where u
is greater than zero. We show that the multigrid algorithms of Brandt,
(in which solutions are computed on a series of nested grids) which were
developed to solve boundary value problems for elliptic partial differ-
ential equations, can easily be adapted to handle linear complementarity
problems. The resulting algorithms are significantly faster than previ-
ous algorithms in which only one grid is used, since the computation time
is proportional to the number of gridpoints on the finest grid.
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MULTIGRID ALGORITHMS FOR THE SOLUTION OF LINEAR
COMPLEMENTARITY PROBLEMS ARISING FROM FREE BOUNDARY PROBLEMS

* LA
Achi Brandt + () ana Colin W. Cryer »(2)

!
1.1 INTRODUCTION. !4

Several free boundary problems can be reformulated in the form of an (infinite-
dimensional) ICP (linear complementarity problem): Given a polygonal domain @ C R ,
!
with boundary 30, and given functions f and g, find u (defined on ) such that

(in an appropriate weak sense)

(a) Lfu(x) < £(x), xeQ, )

(b) u(x) > 0, xX€Q, "
(1.1)

(c) u(x) (Lulx) - £(x)] = 0, xe€e R,

(d) u(x) = g(x), X € 3Q .

where £ is a given second order elliptic operator. The restriction that Q is |

polygonal is not essential, but suffices for our present purposes. We do not write
(1.1a) in the more usual form -fu(x) + £(x) > 0 because we wish to maintain compati-
bility with the notation in previous papers by Brandt.

well-known examples of free boundary problems which can be written in the form
(1.1) include porous flow through dams (a recent reference is Baiocchi [1978]), journal
bearing lubrication (Cryer [197la], Cimatti [1977]) and elastic-plastic torsion (Cea,
Glowinski, and Nedelec ([1974], Lanchon [1974), Cryer [1979]). General references
include: Duvaut and Lions [1976]; Glowinski, Lions, and Tremolieres [1976], and

Cryer {1977], Glowinski {1978); Cottle, Giannessi, and Lions [1980]; and Kinderlehrer

and Stampacchia [1980].
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If Q@ is approximated by a regular grid then the grid can be divided into

N = IG| "interior" points G and |a<;| "boundary" points 3G. Let the grid size
be h. when (1.1) is approximated using finite differences on G, one obtains a

(finite-dimensional) LCP:

(a) Lu(x) < f(x), X € G,
(b) U(x) > o, xXeG,
(1.2)
{c) Ux)[Ww(x) - £(x)] = 0, x€e G,
(d) U(x) = gi(x), X € 3G ,

where U(x) is an approximation to u{x) at the grid points x e G U 3¢ and where
L is a difference operator which approximates L. The coefficients of L are
om™?).

By multiplying (1.2) by h° and eliminating the known values of U(x) on 3G,

the LCP (1.2) may be written in matrix form

(a) AU < b,
) uso, (1.3)
(©) vT@ay - b) =0 ,

where U 1is the N-vector of values of U(x) on G, and A is an N x N matrix
with coefficients which are 0(1). Since we will assume that A is symmetric and
negative definite, (1.3) could be brought into the canonical form for an LCP by multi-
plying (1.3a) by -1.

For example, if £ is the Laplace operator in Rz, then a possible choice for
L would be the classical five-point difference operator, in which case A would be
a matrix with diagonal elements -4 and off-diagonal elements either 0 or 1.

The general structure of a finite-dimensional LCP is that we have a pair of vector

inequalities together with the complementarity condition which states that at every

point at least one of the inequalities must in fact be an equality.
There is an extensive literature on the (finite~dimensional) LCP (see Balinski

and Cottle [1978]). 1In particular, if A is negative definite, as we assume, then .

there exists a unique solution to (1.2) and (1.3).




Since the ICP (1.3) arises from a free boundary problem, the matrix A has

special properties which make it possible to use specialized algorithms which are
particularly efficient. Such algorithms include projected SOR (Cryer ([1971], Glowinski
[1971)) the method of Cottle and Sacher [1977], and the modified block SOR (MBSOR)
method of Cottle, Golub, and Sacher [1978]; Cryer [1979a] summarizes these algorithmg
and Cottle [1974]) gives numerical comparisons betwees them.

Recently, it has been found (Brandt (1977], Brandt and Dinar [1979)) that multigrid
algorithms are an effective tool for solving linear equations of the form

AX = b, (1.4)
The basic idea of these multigrid algorithms is to compute on a sequence of nested
grids. The computation proceeds on a particular grid until the error becomes smooth
and the rate of convergence slows, at which point the computation is transferred to a
coarser grid. Wwhen the error has been reduced on the coarser grid, the solution on the
finer grid is corrected using interpolated values from the coarser grid.

In this paper, we show how the multigrid algorithms FAS and FMG of Brandt can be
modified to solve the LCP (1.3). We find that the modified multigrid algorithms are
substantially faster than previous algorithms. Indeed, with only minor modifications,
the standard multigrid programs solve the LCP with essentially the same efficiency as
is attained for linear equations.

The paper is organized as follows. In Section 2, we describe PFAS, the projected
full approximation scheme for solving (1,3); PFAS combines the concepts of multigrid
algorithms with those of projected SOR. In Section 3, we discuss the implementation
of PFAS, and in Section 4, we give numerical results obtained using PFAS. In Section 5,
we discuss alternative implementations of PFAS, the last of which leads to substantially
improved convergence (we also include several unsuccessful implementations because they
are instructive).

In Section 6, we describe results obtained using PFMG, the projected full multi-

grid algorithm for solving (1.3). The basic idea of PFMG is to compute the initial

-3~




approximation on each grid by interpolating an accurate solution on the next coarser

grid. Using PFMG we are able to solve the LCP to within truncation error using less

work than the equivalent of six Gauss-Seidel sweeps on the finest grid.
Our results are summarized in Section 7 and some possible extensions are

mentioned, Finally, listings of the programs are given in the appendices.
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2. PFAS (PROJECTED FULL APPROXIMATION SCHEME).

methods and their philosophy, and the reader is referred to these papers for background

Brandt [1977], and Brandt and Dinar [1979) give a detailed exposition of multigrid

information. The algorithm described below, PFAS, is a modification of the FAS (Full

Approximation Scheme) which is considered in Section 5 of Brandt [1977], and Section 2.2 ]
r

of Brandt and Dinar [1979].

The polygonal domain Q C R is approximated by a sequence of grids

Gecfc...cdtcd,

with corresponding grid sizes

- _ = - M-1
hl = 2h2 = 4h3 - 2 hM .
k . . k
let F be the restriction of £ to C,
) = £, x e G (2.1)

Then, on Gk the difference equations (1.2) approximating (1.1) take the form

(a) LkUk(x) j_Fk(x), in Gk ,
(b) ™*x) >0, in ¢, ;
X k K X (2.2)
(@) o i ) - F el = o, in &<,
@ &) = gx), in x° .
let the points of Gk be ordered: xt,xg,...,xzk € Gk, and let Uk be the vector
Uk={U-1<j<Nk}E{Uk(x];):1§_j_<_Nk}.
Then, (1.3) takes the form
(a) AkUk < bk R
(b) >0, (2.3)
(©) W) Tk - %y =0 .
where
X k L.
A =(aij:151,3§Nk}. (2.4)

: . s s . k .
is a known sparse symmetric negative definite matrix and b* = {b,} is a known vector

k
with components b* = hiFk(x?) (except at points x? adjacent to 3G ).

-5




THE PROJECTED GAUSS-SEIDEL ALGORITHM

It is possible to solve the LCP's (2.2) and (2.3) using the projected Gauss-Seidel

algorithm which we now describe.

Let uk’o(x) be an approximate solution of (2.2) and (2.3). We compute recur-

sively a sequence of approximations uk'l(x), uk'z(x),..., as follows. Let uk's-l (x)
be given. From (2.2d), the boundary values of uk's(x) are equal to g(x). The
interior values of uk's(x), which together comprise the vector
k,s — kls . : = k,S k
u —-{uj 'liJ:Nk} {u (xj).lijiNk}, (2.5)
are obtained, point by point, by first applying the classical Gauss-Seidel method to
(2.3) to obtain
R R SR WR D I S Vo (2.6)
j 3 Jogey 3 953 3
k,s-1 ~k,s, k
=u, +xr. '"/a;. sa
j j /335 ¢ sAY
and then projecting:
u?'s = max{o,ug's-i} . 2.7) ‘
[

The process of applying (2.6) and (2.7) for 1 <3 f_Nk to obtain uk's from uk,s-l ’

will be called a Gk projected Gauss-Seidel sweep, or a Gk projected sweep. The

quantities i?'s will be called the dynamic residuals.

It is known (Cryer [1971], Glowinski [1971]) that uk's > l}‘ as s > =,

¥hen implementing the projected Gauss-Seidel method only the latest values of the
solution are stored. We will, therefore, often suppress the iteration counter s and
denote one projected Gauss-Seidel sweep applied to (2.2) and (2.3) by

uk + Projected Gauss-Seidel [uk : Lk,Fk] . (2.8)

Similarly,
Vuk = uk's - uk's-l (2.9)

will denote the difference between the latest approximation uk and its predecessor,

while




k k,s-1 k,8-2
u -u

’ (2.10)

denotes the previous difference.

ERROR ESTIMATES FOR THE PROJECTED GAUSS-SEIDEL ALGORITHM

when implementing the projected Gauss-Seidel algorithm as part of a multigrid
process, it is important to be able to estimate the error. 1In order to do so, we note
that since, by assumption, -Ak is symmetric and positive definite, there exists a

coercitivity constant a > 0 such that

wT(-Ak)w > akwTw R (2.11)
Ny
for all we R .
Lemma 2.1
Let Uk be the solution of the LCP (2.3), and let uk > 0 be an approximate
-
solution. Let
& = (r);) e (2.12)
k k ;
and r = (r+j), where
rk, if uk >0,
k b b
r..= (2.13)
] k k
min{0,r.}, if u, =0 .
J J
Then
A A S IR U L S I (2.14)
Hence,

) 3 k -1k
10K = W11, < atllX @.15)

Proof: With rt defined as above, we see that uk satisfies the LCP:

(a) Akuk < bk - rk .

hl +
(b) >0, (2.16)
te) W9 T - Bt 4 =0

Following Falk [1974] we multiply (2.3a) by the non-negative vector (uk)T and use

the complementarity condition (2.3¢) to obtain

~7-
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W - TR < Wk - TS *)

Similarly, multiplying (2.16a) by ()T we obtain
@ - TR ok - TR - (**)
Adding (*) and (**) and combining terms we obtain (2.14) and hence (2.15). ]
Lemma 2.2.
Let Uk be the solution of the LCP (2.3), and let uk > 0 be an approximate solu-

tion obtained after one or more Gk projected sweeps. Let

P 3 2.17)

where Dk is diagonal, and Lk and ek are strictly lower and upper triangular

matrices, respectively.

Then uk satisfies the ICP

u >0, (2.18)

W T @k - K+ PRy =0 .

Hence,

k -1y .k k
6% = )], < a2 1% ), vl - (2.19)

Proof: Consider the projected Gauss-Seidel method defined by (2.6) and (2.7). For

each point x]; we first compute the dynamic residual f’;'s. The new value of uk,s

k
is chosen so as to reduce the residual. Denote the residual at the point xj

immediately after step (2.7) by E};'s, so that
) ¢ WS - Kestly (2.20)
J 3 ii 3 3

Remembering that Ak is negative definite, and hence a};j < 0, we see that there are

two possibilities:

K,s k,s -

either uj >0 and f‘J o,
or u‘;'s = 0 and i'l;'s >0 .,

k}'

Thus, dropping the superscript s, and setting a {2‘; :1<3j <N




(2.21)
It is readily seen from (2.17) that
N Pk(uk's - uk'S-l) ,
(2.22)
= fk + PkVuk .
Combining (2.21) and (2.22) we obtain (2.18), Comparing (2.16) and (2.18) we see H
that the arguments which led to (2.15) from (2.16) may be applied to (2.18), with rt
replaced by -PkVuk, to obtain (2.19). = *
As Lemmas 2.1 and 2.2 show, we can estimate the error in an approximate solution E

uk in terms of the residual rk or the difference Vuk; we will usually use Vuk to

estimate the error, since this quantity is readily available during a Gk projected
sweep. ' '5
Remark. The reader may wonder why we bothered to introduce rf in Lemma 2.1, since
(2.15) holds with rt replaced by rk. The reason is that for the LCP (2.3) there

may be large positive residuals at points x? where Uk(xg) = 0, but this does not

mean that the error is large. O ﬁ
In multigrid algorithms it is necessary to compare norms on different grids. We,

therefore, wish to introduce a norm which is not grid dependent. To do so, we proceed 3

as follows.

k

we first note that, to a good approximation, the coercivity constant ak for -Aa

oy

satisfies
. 2
ak = oh ,

where a 1is the smallest eigenvalue of L.

Next, assume that the approximate grid function uk has been extended to a

function uk(x) on ( approximating the solution wu(x) of (1.1). Then

e AR AT I T G AT




3

k
lux) - w o ll, o= ,

[ laix) - uk(x)lzdx
Q

Nk
I om

2, e

;-

SR ael

=

7
h k k
k
< Ze R I

ek, 2-2
2 .2 k
hk ”Vu ||2 .

The norms IIPk”z are essentially independent of k; for example, for the five-point

a

formula, ||Pk||2: 2. Thus a measure for the error Ilu(x) -uk(x) ||2 Q is provided by
’

n
2——2

K =
llg= m

I} vu HVukll2 , (2.23)

and this norm will be used in the computations.

PFAS (PROJECTED FULL APPROXIMATION SCHEME).

PFAS (Projected Full Approximation Scheme) obtains an approximation ' to the
solution UM on the finest grid GM by recursively generating a sequence of approxi-

mations 1-1k on the grids Gk.

Each Ek is an approximate solution to an LCP of the form (2.2) with Fk replaced

by a function l-"k which is defined later. 1In general, f‘k is different from Fk so

that Gk is not an approximation to Uk However, f‘M= FM and so \.xM is an

approximation to UM.

We begin by initializing GM to some suitable value. For example, we might set
C\M(x) = g(x), on 6" '
(2.24)
uM(x) =0 in GM .
We also set
o)l = 10%°, e = ¢, (2.25)

(where € is the desired accuracy on the finest grid, and where the astronomical number

1030 ensures that at least two GM projected sweeps are carried out),




M) = Mx), for xe G,

and (2.26)
Un(x) = U”(x), for xe G .
We now make a number of GM projected sweeps,

GM + Projected Gauss-Seidel [GM:LM,F-‘M] . (2.27)

After each sweep we test whether

”vG"HG et (2.28)

If so, the accuracy criterion is satisfied, and we accept ﬁM as an accurate approxima-
tion to UM= EM on GM.

It is known that Gauss-Seidel iteration is a smoothing process: the error
ﬁu(x) - GM(x) becomes smoother as the number of sweeps increases, while, at the same
time, the rate of convergence slows down. We, therefore, carry out only a few GM
projected sweeps, stopping when either (2.28) is satisfied or

M

-M -]
1ol > nlioat ,l -

(2.29)

Here, n is a fixed parameter; in our work we have taken n = .5.

Suppose that {2.28) is not satisfied but that (2.29) is satisfied. This means on
the one hand that the accuracy of \-JM must be improved and on the other hand that it

M M
is inefficient to continue iterating on G . The slow rate of convergence on G
indicates that the error is smooth, so that the error can be represented satisfactorily
. M-1 M-1

to the next coarsest grid, G °~. We therefore move to G .

- M -
Since UM(x) satigfies (2.2), with k=M and F =FM, the error

M) = M) - ), (2.30)
satisfies the 1CP
Mo <M, on &M,
oo + T >0, on &",
2.31)
WMy + e itWm - Mooy = o, on o,
VM(X) =0, on BGM R

-11-




where the residual r-:M is given by

oy = M - MM, xed . (2.32)

As already observed, VM(x) is a smooth function and may, therefore, be accurately
represented on GM-I. Furthermore, comparing (2.31) and (1.1) we see that VM(x) is

an approximation to the continuous solution v(x) of the LCP
-M
Ivix) <r (x), xeQ,

vix) + 3 (x) >0, xeqQ,
(2.33)

[v(x) + GM(x)l[-Cv(x) - ;‘M(x)] 0 x€eQ,

vi{x) =0, on 2320,

(where, by abuse of notation, EM (x) and EM (x) are defined on Q by appropriate

M

interpolation between the values of I and G4 on the gridpoints of M. Thus, a

good approximation to vM {x) may be obtained by solving the finite difference approxi-
M-1 . VM . . M-1
mation to (2.33) on G . That is, (x) is closely approximated on G by the

solution qu-l (x) of the LCP,

(a) MM is::—l;M(x), on c*1,
(b) Wl + e 20, on ", (2.34)
1 M~1-M M-1 M-1 M-1-M M-1
©) W + g e W e - N1 =0, o Y
@ Wl =0, on ol
IM-]. M-1 s : Mo . s
Here M and SM are operators taking grid functions on G into grid functions

GM—l IM-l—M

on . (As an aid in memorization, note that in u the subscript M and

superscript M "cancel".)

The operators I:-l and Ss-l can be defined in many ways. One choice is to

choose both I:.l and Si-l to be the injection operator:

~-12=-




——

Inj:-lw(x) - wix), xec? (2.35)

Other choices for I;:-l and sz'l will be discussed later.

If we were solving a linear boundary value problem then condition (2.34b) would not
M-1

apply and it would be most efficient to solve for the correction qu-l on G . Since

we are solving inequalities the problem is nonlinear and it is necessary to solve for a

'full approximation' l-JM-l on GM—l.

Setting

M = Wl + 1::‘16" x) . (2.36)

it follows that l-JM-l(x) satisfies the ICP

(a) LM-]'GM-l(x) if‘M-l(x), in g™t ,
(b) 2 () >0, in ™l
(2.37)
©) Mo MM e - ey = o, in MY,
@) Mx) = gx), on 36T,
where
M lix) = M'l'r”(x) +LM-11:-1\-1M o) = syt E o - M e LM G L 2,38
M
Finally, we set
] (- [ 2.39)
and
At r:'lﬁM , (2.40)

where § 1s a constant; in our computations § has been set equal to (15,

To recapitulate, starting with initial values of GM, eM, and E‘M, we first

carry out GM projected sweeps until convergence slows down. We then introduce a

subsidiary problem on (.'v'M-:L with known }.'M-l and eM-l and initial approximation

GM_I. The process can be repeated, so that at any one stage of the computation we have
a sequence of grid approximations GM,:\M-]’,...,EK-“', (approximating 5M,L-1M_1,...,Gk-1,
respectively), tolerances MMl L ,Gk-l, and right hand sides FLF %,... R

-13-




In the general case, ﬁk is the solution of the LCP

@) M w < w, in &,

) ) > o, in &, ,
(2.41)

(©) 0 ¥ x) - FF ) = o, in &,

(d) ak(x) = g(x) on ack :

or equivalently,

@ ek <,
(b) >0, (2.42)
(©) & T - 5 =0 .

This LCP is solved approximately using Gk projected sweeps until the latest approxi-

mation Gk satisfies either

- k
lva¥|l < €* (2.43)
or
-k —k
9% 15 2 nllva% 1, - 2.44)
If (2.44) holds but (2.43) does not then a new problem on Gk-l is defined by
1]
setting
L. st'l 7% - %G & LRk, (2.45)
ekl o s vk (2.46)
G
- It'lik , 2.47)
gl o Wty 1’}:'16" . (2.48)
=gk -5k, (2.49)
where Wk-l is an approximation to vk on Gk-l. Unless otherwise indicated, I:-l
and s:'l will be taken to be the injection operator Inj;-l.
At some stage the latest approximation ﬁk-l must satisfy, (2.43)
~k~1 k-1
||ak ||G <e , (2.50)

-14-
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i
; if for no other reason than that when k-1 =1 we cannot introduce any more sub
)
sidiary problems and must iterate until (2.50) is satisfied. Having found an approxi-
i
i -k- i
' mation uk 1 of sufficient accuracy, we return to Gk. To do so, we first determine ;
an approximation wk-l to wk.l from (2.48) namely ;
3 . K
i - ke~ ~1- y
) wk 1 = uk 1. Ik luk . (2.51)
k 1
e 1
Next, let I:—l be an interpolation operator taking grid functions on G 1 into
grid functions on Gk. A possible choice for I;—l is the linear interpolation operator b
‘ L;:_l defined as follows. 1If pl' Pz’ P3, and P4 are the corners of a square in 3
- 4
Gk 2 (see Figure 2.1) then
k-1 .
trw (pi), 1 <i<4, ;
W) + ez, 1=5 4
L:-lwk-l ) = 1 1 (2.52) ;
(W TRy) 4w T (RNY/2, =6 L
4
‘ (3 W tep)sa, i=7.
- U y=1 4
- {Other choices for I;:-l will be discussed later.)
P
4 Py
]
v ] ’
| o’
|
.
P - P
5
- . . k-1 k
Figure 2.1: Linear interpolation from G to G.
- -1
Since wk 1 is an approximation to Vk on k '
- k- -1-
S A L P L T I

k-1 k-1 k




is an approximation to Vk, and, noting (2.49),

O S A (2.54)

is an improved approximation to Gk. However, because of the nonnegativity constraint

upon l-Jk, we allow somewhat greater generality and replace Ek as follows:

W o @T) =@ s o W L (2.55)
Initially we set
o 3555 = &, (2.56)

but other choices will be considered later.

PFAS is described by (2.24) through (2.56). A flowchart is given in Figure 3.1,
and the implementation is discussed in Section 3., 1If the algorithm converges, we will
eventually obtain an approximation GM satisfying the required accuracy condition

(2.28) and the algorithm will terminate.




3. IMPLEMENTATION OF PFAS.

The flowchart for PFAS is given in Figure 3.1. PFAS has been implemented as a

FORTRAN subroutine for the case when @ is a rectangle in Rz, £ is the Laplacian

operator, I:-l and S:-l are injections (equation (2.35)), and I

interpolation (equation (2.52)). The subroutine PFAS, which is listed in Appendix A

:_1 is linear
as part of the program for solving the porous flow free boundary problem described in
Section 4, is a straightforward modification of an earlier program, FAS Cycle C, of
Brandt. In the subroutine PFAS most of the computations are performed by auxiliary
subroutines, and the flowchart shows the role played by these auxiliary subroutines.
One reason for giving a listing of PFAS is so that the reader can appreciate how
easy it is to implement PFAS. It may also be remarked that many other interesting free
boundary problems (for example, elastic-plastic torsion problems and cavitating journal
bearing problems) are formulated on simple polygonal regions, and the program given
here could easily be modified to handle these problems.
The following comments arise:

1. In PFAS, the ICP for 5 is solved in the form (2.42) rather than (2.41),

but the values of Gk on aGk are also stored. Thus, Bk = hifk is stored instead
of Ek. In going from Gk to Gk-1 we have, from (2.45), since hk—l = th,
k-1 hi-lﬁk-l,
= hi_l (s;:'l (- 7 + Lk'lz’]:'le) .
= hi_l(st'lh;ztik - A%k + Lk'lxt'lﬁk) , (3.1
-4 St_llb _ Akuk] + Ak-lIl): 1-k

2. A Gk—work-unit is the work required for one Gk projected sweep. The work

-n(M-k)GM-work-units, and PFAS keeps

k . :
for one G projected sweep is approximately 2
track of the total number of GM-work-units, WU. When no confusion is possible we

R X s M .
write "work unit" instead of "G -work-unit".
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3. The asymptotic speed of convergence is measured by the asymptotic convergence

factor U, which is defined by

b= 1im g)va") 0™ (3.2)
WU :

4. All the numerical computations were performed on the Univac 1180 at the
University of Wisconsin-Madison. The programs were written in ASCII FORTRAN and com-
piled and executed using full optimization.

The Univac 1180 single-precision arithmetic has approximately eight decimals.

The residuals usually decrease quite rapidly at the beginning of a computation so the
round~-off threshhold is quickly reached. For example, for the problem considered in
Section 4 with M =5, HUM||G is about 2x103 and the single precision algorithm went
into a loop when HVGM||G reached 5x10”° after a mere 50 work units.

In the numerical experiments we were particularly interested in measuring the
asymptotic convergence factor ﬂ. To eliminate round-off effects, all the computations
reported on here used double precision arithmetic. Of course, this is not normally
necessary. Furthermore, even if very accurate solutions of the discrete problem (2.2)
were required, it would suffice to store GM in double precision and all other

quantities in single precision.

The execution times quoted are those provided by the Univac 1180 Exec. System.
As is often the case on timesharing systems, the times are only reproducible to within
about 10%,

Because of its word length, the UNIVAC 1180 can only directly access 64K words
of storage. When M > 7 more than 64K words of storage are needed by PFAS and there
is a significant degradation in performance.

5. To measure ﬂ the iterations were continued for the first 100 work units,
unless the residuals vanished before. In practice one usually iterates only for about
30 work units.

We also used several values of M in order to measure the dependence of 0

upon M.
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Part of the output of a typical computation using PFAS is shown in Figure 3.2,

-k
After each GY projected sweep, the values of the level k, the residual norm ||%u IIG,

and the number of work units WU are printed out.
The computations starting at a level M/level (M-1) Jjunction and continuing

until the next level M/level (M-1) junction are called a cycle (see Figure 3.2).

For the cycle shown in Figure 3.2, ”VGMlh; decreased from .293 10-9 to .110 10—9

with the expenditure of (99.039-94.400) = 4.639 work units.

While minor variations do arise, a cycle often consists of a sequence of 2 sweeps
at each of levels M - 1,M - 2,...,1, followed by 2 sweeps at each of levels
2,...,M ~ 1, terminating with 2 or 3 sweeps at level M. 1If this pattern is followed
with 3 sweeps at level M then the average number of work units per cycle is

3442+ 2Py =3+ -1y, (3.3)

and the average number of work units per GM projected sweep is 1 + 4/(3(2n -1)).

Of course, very irreqular patterns are observed when the round-off threshhold is

reached.

6. As can be seen from Figure 3.2, ”VGM[hg decreases steadily but not very regu-
larly, in part because of slight variations in the number of sweeps at each level. To
evaluate the algorithm, we have used two quantities:

fina1||G= the value of HVGM]hs at the end of the last complete (3.4)

cycle before 100 work units,
1/[wu_, SV |
° -M -M final initial
be = U19ag; nay g/ 19805501 1G] ' (3.5)

where ||V

1nitial“G is the value of HVGM[h; after the first G sweep. ;f is an

o
estimate for the asymptotic convergence factor u.

. : -M . .
For example, for the data in Figure 3.2, the value of HvuinitialHG (which is

not shown in Figure 3.2) was 4.95 and, of course, WU, ... = 1. Thus,
initial
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LEVEL 5 RESIDUAL NORM= .755-010 WORK= 91.400
LEVEL 6 RESIDUAL NORM= ,126-008 WORK= 92.400
LEVEL 6 RESIDUAL NORM= .515-009 WORK= 93.400

LEVEL 6 RESIDUAL NORM= .293-009 WORK= 94.400
RERNRRRRRARRHRRRRNNNEND OF CYCLEWHNRA# SN RNARASNRSNENM]] = 7771

LEVEL 5 RESIDUAL NORM= .196-009 WORK= 94.650
. LEVEL 5 RESIDUAL NORM= .133-009 WORK= 24.9200
LEVEL 4 RESIDUAL NORM= .879-010 WORK= 94,963
LEVEL 4 RESIDUAL NORM= .613-010 WORK= 95,025
LEVEL 3 RESIDUAL NORM= .385-010 WORK= 95.041
LEVEL 3 RESIDUAL NORM= ,257-010 WORK= 95.057
LEVEL 2 RESIDUAL NORM= .133-010 WORK= 95.061
LEVEL 2 RESIDUAL NORM= .717-011 WORK= 95.064
LEVEL 1 RESIDUAL NORM= .243-011 WORK= 95.065
LEVEL 1 RESIDUAL NORM= .447-012 WORK= 95.066
LEVEL 2 RESIDUAL NORM= ,.303-011 WORK= 95.070
LEVEL 3 RESIDUAL NORM= ,189-010 WORK= 95.086
LEVEL 3 RESIDUAL NORM= .714-011 WORK= 95.102
LEVEL 4 RESIDUAL NORM= ,686-010 WORK= 95.164
LEVEL 4 RESIDUAL NORM= .255-010 WORK= 95.227
LEVEL 4 RESIDUAL NORM= .138-010 WORK= 95.289
LEVEL 5 RESIDUAL NORM= .151-009 WORK= 95.539
LEVEL 5 RESIDUAL NORM= .534-010 WORK= 95.789
LEVEL S RESIDUAL NORM= .284-010 WORK= 96.039
LEVEL 6 RESIDUAL NORM= .473-009 WORK= 97.039
LEVEL 6 RESIDUAL NORM= .194-009 WORK= 98.039
LEVEL 6 RESIDUAL NORM= .110-009 WORK= 99.039

'Qitti*t't*.fﬁtt"itEND OF CYCLEQti.ti"*"'t'ﬁ*iti'ﬁm = .7787

LEVEL 5 RESIDUAL NORM= .737-010 WORK= 99,289
LEVEL 5 RESIDUAL NORM= .499-010 WORK= 99.539
LEVEL 4 RESIDUAL NORM= ,.331-010 WORK= 99.602
LEVEL 4 RESIDUAL NORM= .231-010 WORK= 99.664
! LEVEL 3 RESIDUAL NORM= .145-010 WORK= 99.680

Figure 3.2: Typical Output for the PFAS Algorithm.
(M = 6, Problem (4.1)-(4.2), Run #X67368)
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T TR . Y=y e i = -

re & .110 1072 ,

and

.7787 .

991/ (99.039-1)
4.95 ]

o _ [.110 10”
Ve

We usually only quote rf to one decimal place and ﬁf to two decimal places,

since this is quite adequate for our purposes.

PFAS computes and prints

1/ [WU-WU,

A |
M initial (3.6)

-M -
B vl 1y g
at the end of each cycle.

7. 1In all the experiments reported here the parameters & and n (see (2.29)

and (2.39)) were given by 6 = .5 anmd n = .15, According to Brandt [77] the rate of

convergence is not very sensitive to changes in these parameters, and this was con-

firmed in a few experiments.

In a few cases, but never for 6 = .5 and n = .15, the program "hunted": that

to G1 up to Gk for k < M, and then down

is, the program went down from G .

again to G1 instead of continuing up to GM. This might happen several times before

GM was reached again.
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4. NUMERICAL RESULTS FOR POROUS FLOW THROUGH A DAM.

Calculations were performed on the well-known free boundary problem describing
the flow of water through a porous dam. The geometry is shown in Figure 4.1. Water
seeps from a reservoir of height yl through a rectangular dam of width a to a
reservoir of height Y- Part of the dam is saturated and the remainder of the dam is
dry. The wet and dry regions are separated by an unknown free boundary which must be
found as part of the solution. For an introduction to the problem see Bear [1972],

or Cryer [1976].

’h“x\ﬁ%suﬁm
.
~ \.\!1\ dry
~
14 — =
- 1 ~ ~ \
head water seepage face
— —_— saturated ~ ;f-/
t
\(we ) \
~ ~~ Yy -
~ ~ - tail water
Vo R
N -
> x
B impervious foundation (o}

Figure 4.1 Seepage Through a Simple Rectangular Dam

As shown by Baiocchi {1971] the problem can be formulated as follows: Find u on

the rectangle Q = ABCF such that

Vzu <1, on Q,
u > 0, on Q,
2
u(vu - 1) = 0, on @, (4.1)
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(y1 - y)2/2 on AB,
(y2 - y)2/2 on CD,
5 2 (4.2)
[yl(a -~ x) + y2(x)]/2a, on BC ,

0, on DFA ,

which is in the form (1.1).

This problem was solved using PFAS, with Ik-1 and sk_l being injections

k k
(equation (2.35)) and with Ik defined by linear interpolation (equation (2.52)).

k-1
The initial values of GM were obtained by interpolating the boundary values of u
linearly in the x direction. A listing of the program is given in Appendix A.
We considered the well-known case, y; = 24, Y, = 4, and a = 16. 1In all
computations G1 was a (2 + 1) x (3 + 1) grid with h1 = 8. The finest grid used
was G7 with (128 + 1) x (192 + 1) = 24897 grid points.

To give the reader an idea of the solution, the solution 02 of (2.2) is given

to four decimal places in Table 4.1.

X 0 4 8 12 16
Y
3
24 0 0 0 0 0
] 20 8 2.5371 0 0 0
16 32 18.1486 6.7841 0 0
12 72 47.2732 24.9879 7.9120 0
2 8 128 89.9564 53.9823 22.6601 0
) 200 146.5702 94. 3247 44.7462 0
i
! 0 288 218.0000 148.0000 78.0000 8

Table 4.1. Uz for the Dam Problem
(Run #X34654)

C The numerical results, for different values of M, and €M= TOL=0, are given in
( Table 4.2. The most important conclusions are that convergence always occurred and that

o
the convergence factor u is always less than .81.

f




Run # X34654 X34654 X34654 X34654 X34654 PC 3567
M 2 3 4 5 6 7
GM 5 x 7 9 x 13 17 % 25 33 x 49 65 x 97 129 x 193
| r. o* 4(-17)* 1(-13) 1(-8) 1(-10) 1(=7)
ﬁf .404 .607 .726 .813 .778 .81
3 Execution
] Time for 100 114 .428 1.04 3.55 13.39 e
B Work Units
. (Seconds)
P SoRopt .18 .49 .71 .84 .92 .96

Table 4.2. Solution of the dam problem using PFAS

‘ *Reached round-off level before 100 work units.
1 **Required 70K workspace so extended storage facility invoked, and timing not ;
! compatible. ;

We now compare the convergence factors ﬁf in Table 4.2 with those for other
methods of solving the LCP (2.2).
[ A popular method of solving the LCP (1.3) is GM projected SOR (point SOR with
projection) which has also been called "modified SOR" by Cottle.

when using GM projected SOR it is observed experimentally that the values of at

settle down quite quickly into positive values and zero values. Thereafter GM

projected SOR is equivalent to using point SOR on the subset GT = {xeqa": M) > o).

‘ Thus the asymptotic convergence factor for GM projected SOR is in general equal to
the asymptotic convergence factor for point SOR on GT. It is known (Varga [1962,

p. 294]) that for a region of area A and for the finite difference equations corres-

ponding to the five-point difference approximation to Laplace's equation with stepsize

h, the convergence factor for the optimum choice of overrelaxation parameter w is

approximated quite well by

-
| o, (h) = 2 —3- 1. 4.3)
| 1 + 3.015[h"/A)

25~
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In the present case we do not know the area of Gf, but, as a rough guide, the area

of GT is approximately equal to the area of , which is about 80% of the area of
the rectangle ABCF, Therefore, for our present purposes the asymptotic convergence
factor for GM projected SOR with optimum choice of w may be taken to be

2

. 2 - -
1y 1w

N 1, (4.4)
SOROPt 1\ 3 15(n2/(.8 x 16 x 24)1%

p

and these values are given at the bottom of Tablg 4.2,

As Table 4.2 shows, for large problems, PFAS is faster than GM projected SOR. On
G7, for example, the increase in speed (measured in work units) is e¢n.96/2n.81 = 5,2,
Against this, two factors must be borne in mind: (1) PFAS is more complicated and
requires more overhead per work unit; (2) PFAS requires somewhat more storage. We
discuss these two factors below, but before doing so we wish to emphasize that although
these factors reduce the advantage in speed of PFAS, the measured execution times for
PFAS are much smaller than those for GM projected SOR (see Tables 5.3 and 6.3).

1. Overhead.

To obtain an indication of the additional overhead required by PFAS, we compared
execution times for M = 5, We first used PFAS with e < 2.10-8. This required
96.156 work units and took 3.40 seconds. We then modified PFAS so that only the grid
k = M was used and so that over-relaxation was used with the over-relaxation parameter
w given by equation (4.4). We were thus using GM projected SOR with a nearly

optimum «. To reduce ”VGMHG to eM= 21078

required 146 work units and took
4.82 seconds. Since
(3.40/96.156)/(4.82/146) = 1,07
we conclude that, in this application, the additional overhead required by PFAS only
increases the computation time per GM work unit by about 10%.
2, Storage.
As implemented here, PFAS keeps the solutions and residuals on all the grids, and
1 -2

therefore requires storage for 2[1 + 4" 4+ 4 +...]1 =8/3 GM grids. 1In contrast,

GM projected SOR requires storage for only one GM grid,
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If storage is at a premium, the residuals on GM need not be stored and PFAS
requires only 5/3 times as much storage as GM projected SOR. If GM is stored to
double precision, but Ek and Sk are stored to single precision for k < M, only
4/3 times as much storage is needed. If F(x) were not the constant 1, but a com-
plicated function, then either the function values or the residuals would have to be
stored for GM projected SOR, and PFAS would require at most 33% more storage.
Finally, the PFMG algorithm described in Section 6 often need not store any data on
the GM grid (see Section 6).

Another possible algorithm for solving the LCP (1.3) is the MBSOR (modified block
SOR) algorithm of Cottle and Sacher [1978]. This algorithm is based upon the solution
of a sequence of "one-dimensional" LCP's in much the same way that line SOR is based
upon solving a sequence of "one-dimensional" equations. We used MBSOR to solve the
dam problem (4.1), (4.2), for the case M = 5. The program was kindly provided by
professor Sacher. We tried a few values of the over-relaxation parameter , and
found that 1.8 gave tﬁe best results. With w = 1.8 MBSOR required 114 iterations
to reduce “VuMlh; to below 2.10™° and took 13.13 seconds. The following comments
arise:

1. In numerical experiments on the dam problem, Cottle [1974] found that MBSOR
was about 20% faster than "modified point SOR", that is, GM projected SOR. This is
consistent with the fact that, for equations, the convergence ratio for line SOR is
only faster by a factor of Y2 than point SOR while there is more computation per
iteration. This is also consistent with the present results, since GM projected SOR
required 146 iterations to reduce the residual to 2.10"8 while MBSOR required only
114.

2. The poor execution time of MBSOR (13.13 seconds) compared to PFAS (3.40

seconds) can be explained in part by two factors: (a) MBSOR requires more computation

per iteration than is needed by PFAS for a single work unit; (b) the MBSOR program was




written for the case of general coefficients, while the PFAS program takes advantage
of the properties of the five-point difference operator.

3. It must also be borne in mind that Cottle and Sacher [1978] found that MBSOR
was three times as fast as GM projected SOR for the journal bearing problem where
the solution is zero at a high percentage of the gridpoints.

We conclude from Table 4.2 and from the above discussion, that for the dam problem
(4.1}, (4.2} PFAS is faster than GM projected SOR and modified block SOR for M > 5,
that is, for grids of dimension 33 x49 or greater. Furthermore, we also conclude that

] s . :
the values of uf and pSOROpt in Table 4.2 provide a reasonably accurate guide to

the relative performance of PFAS and GM projected SOR. We believe that PFAS will be
faster than both GM projected SOR and MBSOR for a wide range of problems.

4. For a grid G" with w gridpoints, both GM-projected SOR and modified block
/2) As Table 4.2 shows, the computation

SOR have computation times which are O(N3

time for PFAS is O(N). Therefore, the performance of PFAS vis-a-vis the other methods

improves as the grids become finer.
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5. ALTERNATIVE IMPLEMENTATIONS OF PFAS. E

In this section we discuss alternative implementations of PFAS, the best of which
achieves substantially improved performance.

The improvement in PFAS which might be possible is suggested by considering the
asymptotic convergence ratio, ﬁFAS say, for FAS for Poisson's equation. For FAS, the
error reduction per GM-sweep is .5. 1If each GM-sweep is accompanied by, on average,

one Gk sweep for 1 <k <M~ 1, then the number of work units per GM-sweep is
1 +2 + 2 + ... = 4/3

and the convergence ratio is (.5)3/4 = .595, as stated by Brandt ({1977, p. 351]. 1In the

: . . M
present case, as observed in Section 3, the average number of work units per G sweep

is
1+ 47032 - 1)) = 13/9 ,
so that
heag = (51713 = o108 . (5.1)
This value of aFAS is observed experimentally. The worst observed value of Ef for
the PFAS results quoted in Section 3 was ﬁ = .81, Thus, FAS (for equations) is

3
faster than PFAS (for LCP's) by a factor of &n .8l/in .6188 = 2.28.

Plausible reasons why PFAS is slower than FAS include the following:

Dl: Negative components of Gk.

- k
The inequality (2.41b) requires that Uk be non-negative. In each G projected

sweep the step (2.7) ensures that Gk is non-negative. Furthermore, if It-l is
the injection operator the initial approximation Gk-l defined by (2.47) is also non-

P, : . k
negative. However, (2.54) does not preserve non-negativity: in returning to G from

i

k- e . s - . fo s
G 1 the initial approximation uk may have negative components, and this is often

: . : k
observed. Of course, any negative components are removed in the first subsequent G
projected sweep, but nevertheless the introduction of negative components must retard

convergence. O




e o : -

D2: Large residuals near the free boundary.

At a point x € Gk where ﬁk(x) = 0 the corresponding residual

Fx = e - K (5.2)

i

must be non-negative because of the inequality (2.4la) but need not be small. O

D3: Influence of the discrete interface.

: s Xk 2, . :
The discrete interface I C R is the interface between the set of points where

-k -
U” > 0 and the set of points where Uk = 0. Fk approximates the continuous inter-

face, or free boundary, T separating the points where the solution u(x) is positive

from the points where u(x) is zero.

In special cases it may happen that Fk = ' for all k, in which case PFAS con-
verges as fast as FAS. An example is given by problem (5.3), (5.4) below with R = 2,
for which T 1is the line y = 5 ~ 2x; it is found experimentally that Fk =T for
k < 6.

b3 . k k-1

In general, T and T differ by O(hk), and I and T differ by O(hk).

In particular, it may happen that ﬁk(x) > 0 while ﬁk-l(x) = 0. Furthermore, near

-1 R .
Tk the residuals may be less smooth because of the projection (2.7) and because of

the irregular shape of Fk and Fk_l. This introduces errors in the coarse grid
corrections (2.55) thereby slowing the rate of convergence. Finally, the injec-

tion operator (2.35) is not adequate if the data to which it is applied is not
smooth, (n]

Multigrid algorithms can often be speeded up by modifying the operators It '
si-l, and Ii-l' We have tried a number of modifications of the corresponding PFAS
subroutines which were intended to address the difficulties D1 to D3 mentioned above.

The subroutine PFAS in Appendix A was modified so as to facilitate experimenta-
tion. This was done by changing the calls to the auxiliary subroutines so that input

"switch" parameters determined which version of each subroutine was used.
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In addition, computations were also made for the following problem:

(a) u

(b) u

Ia

£(x,y), in @,

{v

o, in @, (5.3)

(c) u=g, on 3R ,
where O = [0,3} X [0,2), and where f and g are chosen so that the exact solution
is

u= [cos(x+y) + 2] max{0;2.5 R - Rx - y}]2 . (5.4)

Here, R 1is a parameter which is chosen close to the value 2. Note that u € CZ(Q)
and u = 0 above the line y = R(2.5 - X). By changing the value of R we can force
gridpoints to lie very close to the exact free boundary; this may be expected to cause
PFAS difficulty because if ak(x) is positive but very small for some x € Gk then
it will take PFAS a large number ééiiterations to determine whether 6k(x) is zero or
positive.

The modified version of PFAS is called PFASMD and is listed in Appendix B as part
of a program for solving the porous flow problem of Section 4 and problems (5.3), (5.4).

PFASMD was used to compute all the results in this section.

Our first modifications to the auxiliary subroutines of PFAS were not very success-
ful, but they were very instructive and we briefly summarize them. In all cases, the
results are for the dam problem with M = 5. (All were with run #x35519).

Ml. PFAS was modified so as to enforce nonnegativity of ;k immediately after
k- . s :
returning from G 1. This was done by defining ¢ in (2.55) by

¢ (%;5%) = max(o,3} . (5.5)
The new subroutine was called INTAPR.

This modification converged slightly faster than PFAS with ﬁf = .803. O

. . . : - =k : .
M2. The usual situation in which the nonnegativity of u is violated is as

follows.
Let Gk(x) = 0, where x € Gk but x £ Gk-l. Let y € Gk-l be a neighbor of

x, such that Gk(y) > 0. It may then happen that wk_l(y) < 0. As a result,

(I:_lwk-l)(x) may be negative, and if so the updated value of Gk(x) will be negative.
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To avoid this, PFAS was modified by changing the subroutines SUBTRC and PUTU so
k-1

that the operator Ik became
-k . -k .
u'(y) if u (x) > 0 for all eight
k-1-k :
I, u (y) = neighbors x of y in Gk, (5.6)

0, otherwise .

The new subroutines were called PUTUNN and SUBTNN, respectively.

Remembering from (2.48) that

k- Kk~ -1~
Uk 1 =W 1 + Ii luk B
we see from (5.6) and (2.41lb) that the restraint wk-l(y) > 0 is enforced for every

k-1

R - : . k =
point y € G with a neighbor x € G such that uk(x) = 0.

This modification converged slightly more slowly than PFAS, with ﬁf = .817. =]
M3. PFAS was modified so that if the current value of GM(x) was zero, then

ak(x) was forced to be zero for k < M. 'This was done by changing the subroutine

RELAX. In effect, (2.7) was followed by a further operation:

If k <M and GM(xg) = 0 then G?'S =0 . (5.7)
The new subroutine was called RELXFR.
This modification converged but much more slowly than PFAS with ﬁf = ,887 0

M4. Brandt [1977, p. 378) has found residual weighting useful when the coefficients

of the differential equation are changing rapidly. We, therefore, changed the sub-

routine RESCAL so that sthl became :
a 10 = o) + an ), (5.8)
b3 k
a
where A= (Al’Az) for integers Al,A2 and the only nonzero p(A) are
p(0,0) =1,
1
p(0,1) = p(1,0) = p(0,-1) = p(-1,0) = 5 (5.9)
1
p(1,1) = p(1,-1) = p(-1,1) = p(-1,-1) = 7 -

The new subroutine was called RESCAV.




This modification cycled between G1 and G2, as did also the further modifica-

tion for which Ii-l was also defined by (5.8), (5.9).

The nonconvergence of the modification M4 requires explanation, and this is

provided by

Lemma 5.1.

Let v be defined by (2.56). For 1 <k <M let Gk be the solution of the
LCP (2.41), where F° satisfies (2.45). Finally, let Ii_l satisfy
k k-1 k-1 k-1 Nk—l
(Ik—l(z } = 0) = (z = 0), for all =z € R .
Then for PFAS to converge it is necessary that
k-1 - -
S, [}S‘k - LkUk] >0,
k —
k-1-k
LU >0,
k~1-k. T k-1 = =
(1, 0°1's; 7% - k%) =0 .

Proof: We apply PFAS by setting Gk = Gk, and forming the ILCP (2.41) on Gk_l:

Lk-lak-l :-Ek—l

’

{v
(=]
~

(ak—l)T(Lk-lak—l _ Ek-l) 0

: . -k- ~k-1 k .
Solving this exactly so that uk L = Uk , we then return to G . Since PFAS converges,

the new value of Gk given by {(2.55) must be equal to Bk. That is,

X - —k- -1-
NN Y ARSI o J I

which, from (5.10), implies that

Substituting into (*) and noting (2.45) we obtain (5.11) through (5.13).
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The following remarks follow from Lemma 5.1.

1. Lemma 5.1 brings out an interesting difference between multigrid methods for

equations and for inequalities. For equations, Ek - Lkﬁk = 0 and conditions (5.11)~
(5.13) are satisfied for any reasonable choice of S:_l and It-l, but this is not

true for inequalities. 0

2. Since 5k solves (2.41), inequalities (5.11) and (5.12) will certainly hold

k-1 k-1 . :
if Sk d I map nonnegative vectors into nonnegative vectors. In particular,
. . . k-1 k-1 . ; , .
this will be the case if Sk and Ik take linear combinations of values with
nonnegative weights., ]
k-1 k-1 s . c s .
3. If Sk and Ik are injections, then (5.13) is implied by (2.41lc). a
k-1 | . : k- s :
4. If Sy is defined by (5.8) and (5.9) while I 1 is injection then (5.13)
A : X . k
does not hold in general. This is because in general there will be points X,y € G

- - - k
such that x € Gk 1, Uk(x) >0, Uk(y) =0, y 1is a neighbor of x in G and

- K-
(Fk - L Uk) (y) > 0. Then

5% ) = T >0,
k
and
-1 .-k k-k - -
(s: ek - % )) (x) 3_% - L5 (y) >0,

so that (5.13) does not hold. This explains why the modification M4 of PFAS did not

converge. @]

We now describe two further modifications of PFAS which were tried:
M5. Bearing Lemma 5.1 in mind it is possible to introduce weighted sums for which

(5.13) does hold. One choice uses weighted residuals only near the boundary:

k . - -k
4r (x), 1if uk(x) =0 or if u (y) >0

k
for all eight neighbors y € G of x ,

a1 g - ) -,
z p(A)r (x + Ah ) signum [u (x + Ah )] ,
A k k
otherwise
where
(1, if a>o0,
signum a =

0, if a=20,
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This was done by an appropriate change

and where the weights p(A) are as in (5,9).
in the subroutine RESCAL; the new subroutine was called RESCL1.
M6. As mentioned in Dl and D3 above, if Gk(x) = 0 then it may happen that

k k'-l(x) is not zero. It can be argued that changes of Gk(x)

~k -k
u (x) = u (x) + Ik—lw

from or to zero should only be done on G . We, therefore, modified the subroutine

INTADD so that in (2.55) ¢ was defined by

c Fxo, if o5 >0,
e (x);u (x)) = (5.15)
0, otherwise .

The new subroutine was called INTADM.

The modifications M5 and M6 are independent, and we solved (4.1), (4.2) with

M =5 and different combinations of M5 and M6. In each case, the computations were

terminated when HVGMHG_i 2 10-8. The results are summarized in Table 5.1.

Modifications - M5 M6 M5 and M6
Work Units 96.15 126.12 42.81 43,76
Execution Time 3.40 4.67 1.63 1.76
(Seconds )
i .815 .854 .623 .623

Table 5.1: Solution of (4.1), (4.2) with M =5 and

EM = 2.10-8 for modifications 5 and 6.

(Run #X35026)
The performance of PFAS is of course problem dependent. 1In Table 5.2 we

compare modifications 5 and 6 for the problem (5.3), (5.4). As in Table 5.1 we

iterated until ”Vu(k)HG: 2.10°% on &7,
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Modifications - M5 M6 M5 and M6
Work Units 73.62 74.32 56.96 65,57
! . :
: Execution Time
.0 . . .
(Seconds) 3.09 3.24 2,58 3.01
i .731 .738 .669 .704

Table 5.2: Solution of (5.3), (5.4) with M =5, R = 32/15

and EM = 2.10-8 for modifications 5 and 6.

(Run #X35563)

We conclude from the results given in Tables 5.1 and 5.2 that the use of modifica-
tion 6 yields substantial improvements.
Finally, in Table 5.3 we extend Table 4.2 by comparing the measured execution

times for the projected SOR method and the best modification of PFAS (¢ defined by

(5.15) and S:-l defined by injection) for the dam problem for various values of M.
In each case, the iterations were continued until HVG[| <2 10_8. .
G . H
i
5
b
2 3 4 5 6 ¥
t
M Sx7 9 x13 17x25 33 x 49 65 x 97 :
M . M . .
G Projected | G iterations 19 34 69 146 295
SOR Execution Time (seconds) .02 .09 .60 4.88 39.37
PFASMD a™ work units 23 30.5 38.7 42.8 a5.7 |
H
i (M6) Execution Time (seconds) .04 .12 .41 1.64 6.57 i
.i !
i
Table 5.3: Comparison of GM Projected SOR and PFASMD (modification ME) %
for the dam problem with M =5 and ¢ = 2.107%,

(Run #'s X35584 and X35564)

As can be seen from Table 5.3, PFASMD is better than projected SOR except for

. very small grids. i
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6. PFMG (PROJECTED FULL MULTIGRID ALGORITHM)

In this section we describe PFMG (Projected Full Multigrid Algorithm) which is a
modification of the Full Multigrid Algorithm of Brandt. The flowchart for PFMG is
given in Figure 6.1. PFMG has been implemented as a FORTRAN subroutine for the case
when Q 1is a rectangle in R2, and [ is the Laplacian operator. This subroutine
is listed in Appendix C as part of the program for solving the porous flow free
boundary problem of Section 4, and the problem (5.3), (5.4).

PFMG differs from PFASMD in the following respects.

oo M : .
I. 1Instead of beginning on G, one begins on a coarser grid GLIN and gradually

works up to GM.

The computations begin on the initial grid GQ, 2 = LIN, with an initial approxi-
mation Gl. GQ is computed to the required accuracy using grids Gl through GR as
in the PFASMD implementation of PFAS, except that, as will be discussed below, the

decision to move to a different grid is based on slightly different criteria.

- -+
Once ul has been found to sufficient accuracy, the initial approximation ul 1 is
obtained from
\:E+l - Jl+lGE , 6.1)
2
e+l . . . : . [ 2 :
where JE is an interpolation operator taking grid functions on G into grid
. 241 . 2+1
functions on G . It is known (Brandt [1977, p. 377]) that Jl should be more
L+l =2
accurate than IR in order to preserve the smoothness of u .

+ . : .
In PFMG Ji 1 is implemented as a subroutine INTRP3 which uses cubic interpolation.
(To use INTRP3 we must have (¢ > 2 and so LIN :_2.) INTRP3 is based upon repeated use

of the cubic interpolation formulas

£(3) = (-£¢-1) + 9£00) + 9£(1) - £2)1/16 6.2)
£(3) = (£(-1) - 5£(0) + 15£(1) + 5£(2)1/16 . 6.3)

. : : : cas . . -M
Repeating this process, we finally obtain an initial approximation u on G .

Thereafter, the computation proceeds essentially as in PFASMD.
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II. u is used to estimate the local truncation error on Gk-l.

=k
Suppose that the difference approximations are of order p and that u can be

extended to a smooth function on Q. Then on Gk-l,

k-l k-1=k . .2 .-k k-1
A Ik u = hk_lru + T , (6.4)
and
k-1_k=k . - - (p+2) k-1
s 1akek o h.ifuk s 27 PP kL 6.5)

where the local truncation error tk-l depends upon the derivatives of Gk. Eliminating

the unknown fﬁk we obtain

- P -1 _k-1- -1 k-
k-1 2 ak-lpk-lsk k-1 k-k

Xla 2 4 1 6.6)
- k k !
p 1 - - 1 Kkele .
= 2 pastTIER - AN+ aRTIRTIER - fas® ey ©.7)
-1 k k k

In PFMG, the first { } in (6.7) is evaluated in subroutine RESSW; the second { }
is computed and added to the first using subroutines CORSRE and PUTU; the third { } is
evaluated in subroutine RESBW (which is a minor modification of RESSW); and, finally,
tk-l is estimated in subroutine TAUCAM. The estimate (6.7) is not accurate near the
discrete interface, and so TAUCAM computes T:-l where

F 1w, if Flw o

k-1
T, )= -k
u

(6.8)
—l(x) =0.

0 , if
Because of the lack of smoothness of the solution near the free boundary, it is
not entirely clear what the value of p should be. It is known (Brezzi and Sacchi
[1976]) that the convergence of the finite difference approximations is probably only

O(hl) in the whe?

{) norm, and Nitsche [1975) has proved O(hzln h) convergence
in the infinity norm. However, these are global error bounds, while we are concerned
with the asymptotic behavior of the local truncation error 1. Except in a neighbor-
hood@ of the discrete interface Fz, p is clearly equal to 2. Since the choice of

p may vary over £, we could perhaps set p = 1 near FR, but the values of =t

g : - 5
near T are not very accurate and so, for simplicity, we have taken p = 2

everywhere.




k-1
III. As usual in numerical analysis the estimate (6.7) for = can be used in

two ways:

! (a) To estimate the error Gk - u.

k. 2-2-ptk-l’ and remembering that Gk has four times as many points as

Since T
{
! k-1 =
G but hk-l th, we see from (2.23) that
k - k-1 P
e llg= e, "Il - (6.9)
Combining (6.7), (6.8) and (6.9) we obtain an estimate for llTZHG.

In the previous sections we were concerned with asymptotic convergence. That is,
we were concerned with the rate of convergence of Ek to 6k over a very large number
of iterations. However, if we want an approximation to the solution u of (1.1), it is
only necessary to iterate until the residual on G is small compared with the truncation

error, that is, until

-k k
l|va HG= O(HTZHG) . (6.10)

Once (6.10) holds, further computation will improve the accuracy of Gk as a solution
of the finite difference equations but will not improve its accuracy as an approximation
to u. Noting (6.9), we see that (6.10) will certainly be true if

k=1 . (6.11)

-k
1ol < 172,

The stopping criterion (6.11) is incorporated in PFMG by setting
2 -1
€ = max{PRECL#||1, HG,TOL*RATIOHL} (6.12)

! where PRECL, TOL, and RATIO are input parameters. (If TOL = O, RATIO = 1, and

PRECL = 1 then (6.12) reduces to (6.11) for k = ¢).

(b) Improvement of accuracy of Gk—l.

Once an estimate for the truncation error 1:_1 is available, it can be used to
improve the accuracy of the difference approximation on Gk—1 by replacing Fk-l(x)
' k-1 k-1 L . k-1
: by F (x) + T, (x) (see (6.4)). This is only done at points x € G such that

i
-k- - . k~
| u 1(y) > 0 for all four neighbors vy € Gk 1 of x since the value of Tz 1 is not




accurate elsewhere. In PFMG this is done in the subroutine TAUCAM when k = £ - 1 and
the input parameter ITAU = 1.
Of course, this is only meaningful when HT:-IHG is small compared to HVGRHG:
if the iterations are continued for a long time then convergence will not occur because
the conditions of Lemma 5.1 will be violated, but PFMG is never used in this way. In
fact, experience with equalities indicates that when T-extrapolation is used, the best
procedure is to avoid relaxation after returning for the last time to the finest grid.
éi. As already mentioned, the logic of PFMG is more complicated than that of PFAS;
it is best understood by consulting Figure 6.1 and Appendix C. Several parameters are
introduced and this enables one to control explicitly the number of Gk projected
sweeps at any level k, and the number of cycles at level 2. If
NR1 = NR2 = NCYC = NCYCM = -1 ,
PREC = PRECM = 0 ,
RATIO =1 ,

then the logic of PFMG reduces to that of PFAS.

We now describe numerical results obtained using PFMG to solve the dam problem
(4.1), (4.2). 1In all cases, G1 isa (2+1) x (3 +1) grid and LIN = 2.

To control the iterations we set NR1 = 2, NR2 = 3, NCYC =1, NCYCLN = 3, and
NCYCM = 10. The result is that in each cycle on grid Gl, two Gk projected sweeps
are carried out for 1 < k < £ as we descend from G2 to Gl, and one Gk projected
sweep is carried out as we ascend from Gl to Gz. For £ = LIN up to three G
cycles are allowed, so that a good initial approximation can be obtained. For
LIN < £ < M only one GR cycle is allowed, while up to 10 GM cycles are allowed.

This will be clearer after consulting Figure 6.2 which shows the output for M = 4.
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J 00000000 000CE00000000000000000C00000°C60F°0P8IOCCCBRCGRRTSTS 2 TesesercssesseNse

LEVEL 2 RESIDUAL NORM= ,266+001 WORK= 1,000 IRt= 1 IR2(K)= 1
LEVEL 2 RESIDUAL NORM= ,174+001 WORK= 2,000 IR1= 2 IR2(K)= 2
GREEN NORM OF TAU-Z = 9204000 K= 1

LEVEL 1 RESIDUAL NORM= .803+000 WORK= 2,250 IR1= 1 IR2(K)= 1
LEVEL 1 RESIDUAL NORM= ,130+000 WORK= 2,500 IR1= 2 IR2(K)= 2
X LEVEL 1 RESIDUAL NORM= .814-002 WORK= 2.750 IR1= 3 IR2(K)= 3
LEVEL 2 RESIDUAL NORM= ,889+000 WORK= 3,750 IR1= 1 IR2(K)= 3 °
) LEVEL 2 RESIDUAL NORM= ,258+000 WORK= 4.750 IR1= 1 IR2(K)= 1
! LEVEL 2 RESIDUAL NORM= ,102+000 WORK= §,750 IR1= 2 IR2(K)= 2
GREEN NORM OF TAU-Z = «924+000 XK= 1
LEVEL 1 RESIDUAL NORM= .,238-001 WORK= 6.000 IR1= 1 IR2(K)= 1
! LEVEL 1 RESIDUAL NORM= ,149-002 WORK= 6.250 IR1= 2 IR2(K)= 2
! LEVEL 1 RESIDUAL NORM= ,930-004 WORK= 6,500 IR1= 3 IR2(K)= 3
LEVEL 2 RESIDUAL NORM= .484-001 WORK= 7.500 IR1= 1 IR2(K)= 3
LEVEL 2 RESIDUAL NORM= .157-001 WORK= 8.500 IR1= 1 IR2(K)= 1
LEVEL 2 RESIDUAL NORM= ,443-002 WORK= 9.500 IR1= 2 IR2(K)= 2
GREEN NORM OF TAU-Z = «983+000 K= 1
LEVEL 1 RESIDUAL NORM= ,956-003 WORK= 9,750 IR1= 1 IR2(K)= 1
. LEVEL 1 RESIDUAL NORM= ,597-004 WORK= 10.000 IR1= 2 IR2(K)= 2
LEVEL 1 RESIDUAL NORM= .373-005 WORK= 10.250 IR1= 3 IR2(K)= 3
LEVEL 2 RESIDUAL NORM= .117-002 WORK= 11.250 IR1= 1 IR2(K)= 3
GREEN NORM OF TAU-~Z = «983+000 K= 1
SOLUTION ERROR: L INFINITY NORM = «60769+000 GNORM = «19669+000
SOLUTION : L INFINITY NORM = «28800+4003 GNORM = «12949+003
RELATIVE ERROR: L INFINITY NORM = +«21100-002 GNORM = «15189~002

GG 0 G000 RCIENCROL VAP NRPLEEINERSRIGOPSRESIOIQIQEIPRPOISINITOIS 3 (AR AN ENENEEEEENEEE RN AR NENERERENENRSENS
LEVEL 3 RESIDUAL NORM= .946+000 WORK= 3.812 IR1= 1 IR2(K)= 1
LEVEL 3 RESIDUAL NORM= ,265+000 WORK= 4.812 IR1= 2 IR2(K)= 2
: GREEN NORM OF TAU-Z = «114+001 K= 2
LEVEL 2 RESIDUAL NORM= .696-001 WORK= 5,062 IR1= 1 IR2(K)= 1
LEVEL 2 RESIDUAL NORM= ,.257-001 WORK= 5.313 IR1= 2 IR2(K)= 2
GREEN NORM OF TAU-Z = «140+001 K= 1
LEVEL 1 RESIDUAL NORM= ,138-001 WORK= 5,375 IR1= 1 IR2(K)= 1
LEVEL 1 RESIDUAL NORM= ,143-002 WORK= 5,437 IR1= - 2 IR2(K)= 2
LEVEL 1 RESIDUAL NORM= ,894-004 WORK= 5,500 IR1= 3 IR2(K)= 3
LEVEL 2 RESIDUAL NORM= ,115-001 WORK= 5,750 IRf= 1 IR2(K)= 3
LEVEL 3 RESIDUAL NORM= .157+000 WORK= 6.750 IR1= 1 IR2(K)= 3

GREEN NORM OF TAU-Z = «125+001 K= 2
SOLUTION ERROR: L INFINITY NORM = «32441+4000 GNORM = +47357+000
SOLUTION : L INFINITY NORM = +28800+003 GNORM = +43262+003
RELATIVE ERROR: L INFINITY NORM = «11264-002 GNORM = «10947-002

[ E N N NN N NN NN RN RN NN NN YN NN NN NN NN NN NN NN NN NN 4 00 000800 0000 CCEDOPCEPENIPISEOSOIPRPOETIOS
LEVEL 4 RESIDUAL NORM= .609+000 WORK= 2.687 IR1= 1 IR2(K)= 1
| LEVEL 4 RESIDUAL NORM= ,189+000 WORK= 3.687 IR1= 2 IR2(K)= 2
! GREEN NORM OF TAU-Z = «646+000 K= 3
LEVEL 3 RESIDUAL NORM= .953-001 WORK= 3.937 IR1= 1 IR2(K)= 1
LEVEL 3 RESIDUAL NORM= ,637-001 WORK= 4.187 IR1= 2 IR2(K)= 2
: GREEN NORM OF TAU-Z = +114+001 K= 2
LEVEL 2 RESIDUAL NORM= .351-001 WORK= 4.250 IR1= 1 IR2(K)= 1
LEVEL 2 RESIDUAL NORM= .194-001 WORK= 4,312 IR1= 2 IR2(K)= 2

GREEN NORM OF TAU-Z = «108+001 K= 1
LEVEL 1 RESIDUAL NORM= ,913-002 WORK= 4.328 IR1= 1 IR2(K)= 1
o LEVEL 1 RESIDUAL NORM= .984-003 WORK= 4.344 IR1= 2 IR2(K)= 2
LEVEL 1 RESIDUAL NORM= ,615-004 WORK= 4.359 IR1= 3 IR2(K)= 3
LEVEL 2 RESIDUAL NORM= ,942-002 WORK= 4.422 IR1= 1 IR2(K)= 3
LEVEL 3 RESIDUAL NORM= ,369-001 WORK= 4.672 IR1= 1 IR2(K)= 3
LEVEL 4 RESIDUAL NORM= ,134+000 WORK= 5.672 IR1= 1 IR2(K)= 3 -
GREEN NORM OF TAU-Z = «860+000 K= 3
SOLUTION ERROR: L INFINITY NORM = .48932-001 GNORM = «23107+000
RELATIVE ERROR: L INFINITY NORM = «16990-003 GNORM = «14721-003

#ee¢ TIME AT ELAPSE IS «1350 SECONDS ##*#***®

Figure 6.2: Typical output for the PFMG algorithm
(M = 6, Dam Problem, Run #X67705)
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Before discussing how the error was controlled, it is necessary to distinguish
between the goals of PFMG and PFAS. Asymptotically, PFMG and PFAS behave the same,
because once PFMG has reached level M it performs essentially like PFAS. The purpose
of PFMG is to obtain quickly an approximation GM which satisfies the stopping
criterion (6.11), namely

-M M-1
ol < (152, -

To achieve this we set
PRECM =1, TOL = 0, ETA = 10 ,
DELTA = O, PREC = O, RATIO = 1 .
Finally, we set WMAX = 30, and WMAXM = 40, though these values were of course

never reached.

PFMG includes the option of computing, HGQ - ul|, and ”Gl - ullgs where u is
the exact solution. For the dam problem, it is possible to compute u analytically
using elliptic integrals (Cryer [1976]) but this has not yet been done: we therefore
took u to be the most accurate approximation known to us, namely the approximation

u7 computed in double precision on a (128 + 1) x (192 + 1) grid as described in

Section 4. For problem (5.3), (5.4) the exact solution is given by (5.4).

We first performed a number of experiments with M = 2,3,4, and 5S:

1. rt-extrapolation (with p = 2) gave slightly worse results for the dam problem
and problem (5.3), (5.4).

2. In contrast to our experience with PFAS, the use of modification 6 had only a
slight effect.

3. It was thought that convergence might be improved by multiplying the difference
Vﬁk(x) by h for points x near the free boundary before computing HVGk(x)||G- This
was implemented as a subroutine RELAX1 but was found to have negligible effect.

All the results given below are for the case of no t-extrapolation (ITAU = 0) and

no modification (NINTSW = NRESSW = 1),




The results for the dam problem for different values of M are shown in Table 6.1.

M 2 3 4 5
GM work Units 3.75 6.75 5.67 5.41
Execution Time (seconds) .009 .053 .131 .349
o™ - 7“@/““”.,, .00374 .00112 .000169 .0000623
uM-u ”G/”“” .00334 .00109 .000147 .000040%
Joaty) .889 .157 134 .0714
M-1
fry g 2.39 1.25 0.86 0.60

Solution of the dam problem using PFMG.
(Run #X67247)

Table 6.1:

Since we only have estimates for TM-l, it is not possible to obtain rigorous error

bounds. Nevertheless, it is interesting to apply the error bounds of Section 2.

Let ﬁM denote the vector obtained by evaluating the solution u(x) on G Then,
from (6.4), (1.1), (2.2), (2.3), (2.13), and (3.1),
N < e,
so that, from Lemma 2.1,
M
- 6.1
16" - Hz_qMHr (P 6.13)
On the other hand, from Lemma 2.2,
-M M M
lo* - H2<—l|9 I, ltvat,
For the dam problem, P i3 an upper triangular matrix with at most two nonzero
elements per row, and ”PMI(Zf_ 2. Thus,

o - 3, < & HVu”u (6.14)
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Combining these inequalities we obtain

-M 1l M -M
il 2 11, + 209,)

" -
or, equivalently,

" -

1 =M
Pl 2 Ul + 20] -

Using (6.8) and (6.9), we conclude that

15" -

.1 1 M-1 M
Pllge - 5 Il + 2] -

2

Next, we note that for the dam problem

where

s () ¢ G

and

=16 2
hM

Thus, finally, for the dam problem,

ot -

For example, for M = 5 we obtain, using Table 6.1, that

<5 =5
165 - &l /llo

the observed value quoted in Table 6.1 is .000040.

In Table 6.2 we repeat the computations of Table 6.1 for the problem (53.3),

e 52—4 izl—p B PR Y i | A

*llg2 2’ [2(0.60 + 2.0m) ]/ (5.9 10%)

14

= .00036 ;
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= ,055 > 14/256 .

(6.15)

(6.16)

(6.17)

(6.18)

(6.1%)

(6.20)

(5.4) .




—

M 2 3 4 5
GM work Units 3.75 6.75 5.672 5.414
Execution Time (seconds) .028 L1603 .263 .842

-M ~My

™~ o sl .0147 .000985 .000266 .0000645
=M ~m M |

u ~ U “G/[h; LG .0147 .00127 .000376 .0000956
il =M

BT 10.5 .241 .121 .0764

| M_ly

[, |G 4.18 1.62 1.10 .749

Table .2 Solution of problem (5.3), (5.4) using PFMG.

(Run #X67243)

The error estimate (6.19) also holds for the problem (5.3), (5.4), since we are
using the Laplace operator on a rectangle with sides in the ratio 2:3. Applying (6.19)

we obtain

10
<5 =5 S5 .20 L 4
10” = W87l 2 5 1767 + 20070 [/7q1.2 10%)
= ,0021 ;

the observed value quoted in Table 6.2 is .0000645.

The behavior of the global error GM - u can be checked using Tables 6.1 and 6.2.

From Tabl. ©.1 we have
1/3
-5 -7
[”“ -u'll, ~ [.0000623]1/3 L1
-2 -7 " |.00374 T .1.96
=250, 2

N s . 2,
In Table €.2 the arror in u is "abnormally large". However,

11/2

1

21.96

_ [.0000645 172
J 1.000985

) 2
These resuits strongly suaggest that the global error is 0(h ).
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The behavior of the local error 1 can also be checked using Tables 6.1 and 6.2.

From Table 6.1,

/3 - 1/2.66 ,

| Ul ingt’? = teoz2.301*

i e

| while, from Table 6.2,

(a.18/.7491%73 = 1/2°82

4 1/3
- Ningt

so that 1 = O(hq) with g€ (.66,.82). This explains why T-extrapolation with p = 2
did not reduce the computational effort for these problems. The essential difficulty
is of course that the irregularity of the discrete interface makes it difficult to
obtain accurate estimates for T. 1In fact, T-extrapolation with p =1 was found to

be slower than tT-extrapolation with p = 2.
Finally, in Table 6.3 we repeat the computations of Table 5.3 for a tolerance

eM = 0714, the value of |IVGSHG in Table 6.1. We are thus comparing the performance

of PFAS (with modification 6), PFMG, and projected SOR for comparable errors.

Method PFMG PFASMD (M6) Projected SOR
Work Units 5.41 9.64 56.0
-M '
[tvu HG .0714 .0239 .0695 ]
[
Execution Time 349 .440 1.94
(seconds)

M
Table 6.3: Solution of the dam problem for M=5 and € = .0714
using PFASMD (modification 6), PFMG, and projected SOR.

(Runs #X67247 and #X67250)

From Table 6.3, we see that PFMG is faster than projected SOR even when only low
| accuracy is required. PFAS and PFMG require comparable times, but PFMG gives much
i more information and is, therefore, preferable. PFMG also uses fewer work units than

PFAS. This is significant because the number of work units used is independent of

A
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the computer. Furthermore, on the basis of experience with many problems, it can be

said that the number of work units used does not vary greatly with the problem: for
most operators L PFMG requires only 5.4 work units.

We conclude this section with some remarks on the implementation of PFMG:

1. From Table 6.3 we see that the execution time per work unit of PFMG is greater
than the comparable quantity for PFAS by a factor

.349
5.41

-440

9.6d4 = 1.41 .

/

. D . L . k
This additional overhead is probably due to the cubic interpolation used by J and

k-1’
could perhaps be reduced by better programming. When £ 1is complicated, the additional
overhead required by PFMG is relatively much less significant: it is only with a very
simple operator like the 5-point Laplacian that the additional overhead is so expensive.
M
2. 1In PFMG one often need not have any storage for the finest grid G - not even
s s M ; N
external storage. The algorithm visits G only twice: at the beginning of the last
cycle and at the end of the last cycle.
At the beginning of the cycle, the following operations are performed: inter-
. M M . . M-1 M-1
polation (JM_l); two G projected sweeps; and residual transfer (IM and SM ).
. . M R
All these operations can be made in one passage over G , in such a way that only four
M . . . .
columns of G are held in memory at one time. Each time a new column, say column 1,
is created (by interpolation), a relaxation can be made in column i-1, then the secornd
relaxation can already be made in column 1i-2 and the residuals from column i-3 can
be transferred back to the coarse grid. Column i-4 c¢an simultaneously be discarded
. . . C s M . ; . :
(i.e., replaced by column 1i). After this visit to G all the information is avail-
. =M-1 ~-M- M-1 , M
able (in F and u l) to solve the G problem to the truncation level of G .
. M . R .
The final return to G (which would require the storage of the previous values
M . . . . M M-1 .
of U') 1is made in order to obtain the solution on G rather than on G , but it
does not improve its pointwise accuracy. If one is only interested in knowing some
functionals of the solution, these can be calculated without having the final solution
1 M-1

M : . M-
on G . To approximate a functional X(U), for example, one computes v'*((u‘v1 o+ Ty

'
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- -M -1~ -M- . . M-1 -M
where o: 1. H(u') - M(I: 1uM), uM 1 is the final solution on G , and u
. . M . . M-1 M-1
is the last solution on G before switching back to G . Clearly, GM can be
, , M M-1 " e

calculated during the above-mentioned passage on G . Note that OM is a "relative

; - L. M-1 . . -M-1 M-1
truncation correction", similar to T . It makes the approximation ¥(u ) +a

M M

M . R ;
correct to the G truncation level. ¥ need not be a linear functional.
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7. CONCLUSIONS AND RECOMMENDATIONS.

1. Mulcigrid methods can easily be adapted to handle linear complementarity

proplems arising from free boundary problems (see Table 4.2). 1

2. Multigrid methods are superior to projected SOR and modified block SOR (see
Takles 5.3 and 6.3, and Section 4).

3. For high accuracy solutions of the discrete LCP, one should use PFASMD with
modification & (see Tables 5.1 and 5.2).

4. For solutions which are accurate to within truncation error one should use PFMG,
with no modifications (see Tables 6.1, £.2, and 6.3).

Finally, we conclude with some comments suggesting possible future applications of
multigrid methods to comp’ementarity problems:

1. For equalities, experience has shown that multigrid methods are as efficient
for proklems where L is nonlinear as for problems where £ 1is linear.

2. Experience from equalitiec indicates that with similar efficiency (just a few
more work units) one can solve much more difficult pror'ems, such as problems in which
the coefficients of [ vary by orders of magnitude {e.g., large variations in the
diffusivity of the dam). In such cases SOR and other methods converge very slowly.

See Alcouffe et. al. (to appear).

3. The truncation error near a discrete interface cannot be reduced by using

higher order approximations because the second derivatives are usually discontinuous,

A good way to improve the approximation would be to use finer mesh sizes near the

discrete interface. This can be combined very effectively with éﬂe multigrid process
(see Brandt (1979, Section 3]). 1In fact, a vast improvement is expected if
t-extrapolation is used together with local refinements. Fine levels will then be
used only near the interface.
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=== APPX-A-PFAS ===

LA A AL AR 22 S AR 222222222 2222222 X222 2222 2222002222 2]

THIS PROGRAM SOLVES THE PROBLEM OF POROUS FLOW THROUGH A
RECTANGULAR DAM OF HEIGHT Y1 AND WIDTH A.

THE RESERVOIR TO THE RIGHT OF THE DAM IS OF HEIGHT Y2.
WRITTEN BY ACHI BRANDT AND COLIN CRYER AUGUST 1980

ADDITIONAL PARAMETERS USED ARE:

NX0 THE NUMBER OF GRID INTERVALS IN THE X=-DIRECTION IN
THE COARSEST GRID, GRID 1.

NYO THE NUMBER OF GRID INTERVALS IN THE Y-DIRECTION IN
THE COARSEST GRID, GRID 1.

HO THE GRID SIZE IN THE COARSEST GRID, GRID 1.

M THE NUMBER OF GRIDS TO BE USED.

TOL THE TOLERANCE. COMPUTATION TERMINATES IF THE RESIDUAL

ON THE FINEST GRID IS LESS THAN TOL.

WMAX THE MAXIMUM NUMBER OF WORK UNITS PERMITTED ON THE
FINEST GRID. COMPUTATION TERMINATES WHEN WMAX IS EXCEEDED.
IN PRACTICAL CASES, ONE SETS WMAX=30. IN THE PRESENT WORK,
WE OFTEN SET WMAX=100 SO AS TO OBSERVE THE ASYMPTOTIC
BEHAVIOR OF THE ALGORITHM.

MPRINT THE GRID TO BE PRINTED AT THE END OF THE COMPUTATION.
THAT IS, WE PRINT THE MPRINT SUBSET OF THE FINAL ANSWER
ON THE GRID M.

NQSIZE SIZE OF ARRAY Q
MUST BE CHANGED FOR LARGE PROBLEMS BY EDITING PROGRAM
=18000 FOR DAM PROBLEM M=2,3,4,5,6
=70000 FOR DAM PROBLEM M=7

ALL THE PARAMETERS ARE SET IN THE PROGRAM, BUT THEIR VALUES
CAN BE RESET ON THE NAMELIST INPUT CARD WHICH IS READ IN
BY THE PROGRAM.

THE NAMELIST CARD MUST BE PROVIDED AS INPUT.

THE PROGRAM SETS UP STORAGE FOR THE SOLUTIONS AND RIGHT
HAND SIDES.

THE SOLUTIONS ARE STORED IN ARRAYS 1 TO M.

THE RIGHT HAND SIDES ( OR, SOMETIMES THE RESIDUALS )
ARE STORED IN ARRAYS M+1 TO 2*M.

THIS PROGRAM WAS USED TO COMPUTE THE RESULTS IN FIGURE 3.2
AND TABLES 4.1 AND 4.2 OF THE MRC REPORT.

LA R A2 A R d R L Rl a1 A2 22 222222222222 222X

IMPLICIT DOUBLE PRECISION (A-H,0-2)
EXTERNAL G,F

COMMON /PRBDAT/Y1,Y2,A

COMMON /QDAT/NQSIZE, NQERR

NAMELIST /INDAT/Y1,Y2,A,NX0,NYO,HO,M,TOL,WMAX,MPRINT
NQSIZE=18000

Y1=24

Y2=4

A=16

NX0=4

NYO0=6




|
|
:
|

58Q
59.
60
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
.
72.
73.
74.
75.
76.
77.
80.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.

a0

OO0

[seNeNeNe!

axcs=x APP-A~PFAS =zo==x=

HO=4.

M=3

TOL=0.

WMAX=30.

MPRINT=1

READ(5, INDAT)
WRITE (6, INDAT)

SET TIME TO ZERO

CALL URTIMS(0.0)

CALL PFAS(NX0,NYO,HO,M,TOL,WMAX,G,F)
PRINT ELAPSED TIME
T=URTIMG('ELAPSED TIME')
CALL SOLPRT(M,MPRINT)
STOP

END

DOUBLE PRECISION FUNCTION F(X,Y)

DAM PROBLEM

THIS SUBROUTINE COMPUTES THE RIGHT HAND SIDE OF THE
GOVERNING POISSON EQUATION DEL*DEL U=F.

IMPLICIT DOUBLE PRECISION (A-H,0-2Z)

F=1.

RETURN

END

DOUBLE PRECISION FUNCTION G(X,Y)

DAM PROBLEM

THIS SUBROUTINE COMPUTES THE BOUNDARY DATA AND THE
INITIAL APPROXIMATION TO THE SOLUTION U.

THE INITIAL APPROXIMATION IS OBTAINED BY LINEAR INTERPOLATION
IN THE X-DIRECTION BETWEEN THE GIVEN BOUNDARY DATA.
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /PRBDAT/Y1,Y2,A

Gl=.5%(Y1-Y)**2

G2=.5*(Y2~-Y)**2

IF( Y.GE.Y2) G2=0

G=(G1*(A=-X)+ G2*X)/A

RETURN
END

SUBROUTINE PFAS(NX0,NYO,HO,M,TOL,WMAX,U1,F)

THIS SUBROUTINE IS THE MAIN MULTIGRID SUBROUTINE.

IT INITIALIZES THE PROBLEM, AND REPEATEDLY CALLS

THE SUBROUTINES RELAX,RESCAL,PUTU,CORSRE,SUBTRC,AND INTADD.
IMPLICIT DOUBLE PRECISION (A-H,0-2Z)

COMMON /QDAT/NQSIZE,NQERR
EXTERNAL U1,F
DIMENSION EPS(10)

SET UP ARRAYS 1 TO M FOR THE SOLUTIONS

AND ARRAYS M+1 TO 2*M FOR THE RIGHT HAND SIDES,
AND CHECK THAT Q ARRAY IS LARGE ENOUGH

NQERR=0
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115.
116.
117,
118.
119,
120.
121,
122,
123.
[ 124.
I 125,
‘ 126,
127,
128,
- 129.
' 130.
131,
! 132,
1 133,
134.
135.
136.
137.
138.
139,
140.
141.
i 142,
143.
144.
145,
146.
147.
148.
149.
150.
i 151,
152,
153,
1 154,
155.
] 156.
157.
: 158.
a 159,
160.
161,
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.

EP v

[e o Ne)

s leNeNe!

21
92

10

1

12

wn

=mmmx APPX-A~PFAS ==su=
DO 1 K=1,M
K2m2##*(K=-1)
CALL GRDFN(K,NX0*K2+1,NY0*K2+1,H0/K2)
CALL GRDFN (K+M,NX0*K2+1,NY0*K2+1,H0/K2)
PRINT 10,NQSIZE
FORMAT(' SIZE OF Q ARRAY = ', I10)
IF (NQERR.EQ.0)GOTO 12
PRINT 11,NQERR
FORMAT(' *** ERROR IN GRDFN *** ARRAY Q NOT LARGE ENOUGH #**',
/.,' ARRAY Q S1ZE SHOULD BE AT LEAST =', I10)
STOP
CONTINUE

INITIALIZE
EPS{M)=TOL
K=M
WU=0
CALL PUTF(M,U1,0)
CALL PUTF(2*M,F,2)
ETA=.5
DELTA=.15

START OF MAIN LOOP IN WHICH ONE MODIFIED GAUSS-SEIDEL
SWEEP ON GRID K IS MADE.

ERR=1.E30
ERRP=ERR
CALL RELAX(K,K+M,ERR)

IF (WU .LE. 0) ERRBEG=ERR
WU=WU+4 , ** (K-M)
WRITE(6,4)K,ERR,WU
FORMAT(' LEVEL',IZ2,'
IF(ERR.LT.EPS(K))GOTO 2
IF (WU.GE.WMAX)RETURN
IF(K.EQ. 1.OR.ERR/ERRP.LT. ETA)GO TO 3

RESIDUAL NORM=', D10.3,' WORK=', F7.3)

GO TO COARSER GRID
IF( X.NE.M .OR. WU.LE.3 ) GOTO 92
FMU=0.0
IF( ERR.GT.0 ) FMU=(ERR/ERRBEG)**(1.D0/(WU-1))
PRINT 91,FMU
FORMAT(' °*,
CONTINUE
CALL RESCAL (K, K+M,K+M-1)
EPS (K-1)=DELTA*ERR
K=K=-1
CALL PUTU(K+1,K)
CALL CORSRE (K, K+M)
GOTO 5

20('*'),'END OF CYCLE',20('*'),'MU = ',F8.4)

GO TO FINER GRID
IF (K.EQ.M)RETURN
CALL SUBTRC(K+1,K)
CALL INTADD(K,K+1)
K=K+1

GOTO 5
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=R APPX=A-=-PFAS =mIme

END

SUBROUTINE CORSRE(K,KRHS)
APPLIES THE DIFFERENCE OPERATOR ON GRID K
TO THE GRID FUNCTION IN ARRAY K, AND ADDS THE RESULT TO THE
VALUES IN ARRAY KRHS.
KRHS KRHS K K,0
B = R +A U

THE RESULT IS STORED IN ARRAY KRHS.
IMPLICIT DOUBLE PRECISION (A-H,0-2Z)
COMMON Q(18000) ,IST(200),IRHS(200)

CALL KEY(X,IST,1I,JJ,H)

CALL KEY(KRHS,IRHS,II,JJ,H)

I1=II-1

J1=3J-1

DO 1 I=2,I1

IR=IRHS (I)

IO=IST(I)

IM=IST(I-1)

IP=IST(I+1)

Do 1 J=2,J1

A==Q (IR+J )=Q (I0+J+1)=Q(I0+J=-1)=Q(IM+J)-Q(IP+J)

1 Q(IR+J)==A-4.*Q(10+J)
RETURN
END

SUBROUTINE GRDFN(N,IMAX,JMAX,HH)

SETS UP ARRAY N.

IMAX THE DIMENSION IN THE X DIRECTION

JMAX THE DIMENSION IN THE Y DIRECTION

HH THE GRID SIZE

THE ARRAY NST CONTAINS THE STARTING ADDRESSES OF THE ARRAYS.
THE ARRAY IMX CONTAINS THE MAXIMUM ROW NUMBERS

THE ARRAY JMX CONTAINS THE MAXIMUM COL NUMBERS

THE ARRAY H CONTAINS THE GRID SIZES.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /GRD/NST (20) , IMX(20) ,JMX (20) ,H(20)
COMMON /QDAT/NQSIZE, NQERR

DATA IQ/1/

NST (N)=IQ

IMX (N)=IMAX

JMX (N )=JMAX

H(N)=HH

1Q0=IQ+IMAX*JIMAX
IF(IQ.LE.NQSIZE+1) RETURN
NQERR=IQ-1

END

SUBROUTINE INTADD (KC,KF)
LINEARLY INTERPOLATES CORRECTION ON COARSE GRID KC
AND ADDS TO SOLUTION ON GRID KF.

KF KF KC KF KF
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U =PHI(I W +U 1 U )
KC

IMPLICIT DOUBLE PRECISION (A-H,0-~Z)
COMMON Q(18000),ISTC(200),ISTF(200)
CALL KEY(KC,ISTC,IIC,JJC,HC)

CALL KEY(KF,ISTF,IIF,JJF,HF)

DO 1 IC=2,1IC

IF=2*IC-1

JF=1

IFO=ISTF(IF)

IFM=ISTF(IF-1)

ICO=ISTC(IC)

ICM=ISTC(IC-1)

DO 1 JC=2,JJC

JF=JF+2
A=.5%(Q(ICO+IC)+Q(ICOHIC=1))
AM=,5*%(Q(ICM+JC)+Q(ICM+JC~1))
Q(IFOHIF) = Q(IFO+JF)+Q(ICO+JC)
Q(IFM+JF) = Q(IFM+JF)+.5*(Q (ICO+JC)+Q(ICM+JC))
Q(IFO+JF=1)=Q (IFO+JF~1)+A
Q(IFM+JF=1) = Q(IFM+JF=1)+.5%(A+AM)
RETURN

END

SUBROUTINE KEY(K,IST,IMAX,JMAX,HH)

RECOVERS THE INFORMATION ABOUT ARRAY K SET UP BY
THE SUBROUTINE GRDFN.

THE VALUE OF THE GRID FUNCTION AT THE POINT (I,J)
IS ADDRESSED AS U(IST(J)+I).

IMPLICIT DOUBLE PRECISION (A~H,0-Z)
COMMON/GRD/NST(20) , IMX(20) ,IJMX(20),H(20)
DIMENSION IST(1)

IMAX=IMX(K)
JMAX=JMX (K)
IS=NST(K)=-JMAX-1
Do 1 I=1,IMAX
I1S=IS + JMAX
IST(I)=IS8
HH=H(K)

RETURN

END

SUBROUTINE PUTF(K,F,NH)

INSERTS THE VALUES OF THE FUNCTION F
EVALUATED AT THE POINTS OF GRID K
AND MULTIPLIED BY GRIDSIZE**NH

INTO THE ARRAY K.

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON Q{(18000),1IST(600)
CALL KEY (K,IST,II,JJ,H)
H2=H**NH
DO 1 I=1'II
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po 1 J=1,3J
X=(I-1)*H

Y=(J=-1)*H
Q(IST(I)+J)=F(X,Y)*H2
RETURN

END

SUBROUTINE PUTU(KF,KC)
THIS SUBROUTINE INJECTS THE SOLUTION ON THE FINE GRID
KF INTO THE COARSE GRID KC.
KC,0 KC KF
U

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON Q(18000),IUF(200),IUC(200)
CALL KEY(KF,IUF,IIF,JJF, HF)

CALL KEY(KC,IUC,IIC,JJC,HC)
po 1 ICc=1,IIC

IF=2*1C-1

IFO=IUF(IF)

ICO=TIUC(IC)

JF=-1

DO 1 Jc=1,33C

JF=JF+2

Q(ICO+IC)= Q(IFO+JF)
CONTINUE

RETURN

END

SUBROUTINE RELAX (K, KRHS,ERR)

CARRIES OUT ONE MODIFIED GAUSS-SEIDEL

SWEEP ON THE GRID K WITH RIGHT HAND SIDE IN ARRAY KRHS.
RETURNS WITH ERR= G~NORM OF THE DYNAMIC RESIDUALS

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON Q(18000),IST(200),IRHS(200)
CALL KEY(K,IST,II,JJ,H)

CALL KEY(KRHS,IRHS,II,JJ,H)
I1=11-1

J1=J33-1

ERR=0,

DO 1 1I=2,I1

IR=IRHS(I)

I0=IST(1)

IM=IST(I-1)

IP=IST(I+1)

po 1t J=2,01

B=Q (IR+J )=Q(I0+J+1)=-Q(I0+J=1)=-Q(IM+J)-Q(IP+J)

QT=-.25*A

ON=MAX(0.0,QT)
ERR=ERR+ (QN=Q (I0+J) ) **2
Q(I10+J)=QN
ERR=SQRT(ERR)/H
RETURN
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END

SUBROUTINE RESCAL(KF,KRF,KRC)

CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE
IN ARRAY KRF , AND INJECTS INTO ARRAY KRC.

BEFORE INJECTION, THE RESIDUAL IS SCALED

BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE
FACT THAT THE GRID SIZE ON GRID KF IS HALF THE

GRIDSIZE ON GRID KC.

KRC KC KRF KF KF

R = 4*s (B - A u )

KF

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON Q(18000),IUF(200),IRF(200),IRC(200)
CALL KEY(KF,IUF,I1IF,JJF,HF)

CALL KEY(KRF,IRF,IIF,JJF,HF)

CALL KEY(KRC,IRC,1IC,JJC,HC)

IIC1=I1C-1

JJC 1=3JC~-1

DO 1 IC=2,IIC1

ICR=IRC(IC)

IF=2*IC-1

JF=1

IFR=IRF(IF)

IFO=IUF(IF)

IFM=IUF(IF-1)

IFP=IUF(IF+1)

po 1 Jc=2,J3JC1

JF=JF+2

S=Q (IFO+JF+1)+Q(IFO+JF-1)+Q (IFM+JF)+Q(IFP+JF)
Q(ICR+JC)=4.*(Q(IFR+JF)=S+4 . *Q(IFO+JF))
RETURN
END

SUBROUTINE SOLPRT(M,MPRINT)
PRINTS THE ARRAY M ON THE SUBARRAY MPRINT.

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON Q(18000) ,IST(600)
DIMENSION QTEM(100)
CALL KEY (M,IST,II,JJ,H)
INTERV=2** (M-MPRINT)
DO 20 J=JJ,1,-INTERV
L=0
DO 10 I=1,II,INTERV
X AND Y ARE NOT PRINTED HERE, BUT ARE COMPUTED IN
CASE A LATER VERSION NEEDS THEM.
X=(I-1)*H
Y=(J=1)*H
L=L+1
QTEM(L)=Q(IST(I)+J)
CONTINUE
PRINT *,(QTEM(LL),LL=1,L)
CONTINUE

PRy,

s i

i, o

aihiad .




=ss=mm APPX-A-PFAS =mma==

400. RETURN
401, END
402. c
403. c
404. SUBROUTINE SUBTRC(KF,KC)
405. c THIS SUBROUTINE COMPUTES THE VALUE INJECTED FROM GRID KF TO )
406. c GRID KC AND SUBTRACTS IT FROM THE SOLUTION ON GRID KC.
407. c KC KC KC KF
408. c W =U =~-I U
409. c KF
410. c
411, IMPLICIT DOUBLE PRECISION (A-H,0-Z)
412, COMMON Q(18000),IUF(200),IUC(200)
413, CALL KEY (KF,IUF,IIF,JJF,HF)
414. CALL KEY (KC,IUC,IIC,JJC,HC)
415, Do 1 IC=1,IIC
416. IF=2%IC-1
417, IFO=IUF(IF)
418. 1CO=IUC(IC)
419. JF=-1
420, DO 1 JC=1,J33C
421. JF=JF+2
422, Q(ICO+JC)=Q (ICO+IC)-Q(IFO+JF)
423, CONTINUE
424. RETURN
425. END
426. c
427. c
;“m. Loa
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THIS PROGRAM SOLVES THE PROBLEM OF POROUS FLOW THROUGH A

- RECTANGULAR DAM OF HEIGHT Y1 AND WIDTH A.

THE RESERVOIR TO THE RIGHT OF THE DAM IS OF HEIGHT Y2.

WRITTEN BY ACHI BRANDT AND COLIN CRYER AUGUST 1980

THIS PROGRAM WAS USED TO COMPUTE THE RESULTS IN
SECTION 5 AND TABLE 6.4 OF THE MRC REPORT.

ADDITIONAL PARAMETERS USED ARE:

NXO0
NYO
HO

M
TOL

MPRINT

NQOSIZE

THE NUMBER OF GRID INTERVALS IN THE X-DIRECTION IN

THE COARSEST GRID, GRID 1.

THE NUMBER OF GRID INTERVALS IN THE Y-DIRECTION IN

THE COARSEST GRID, GRID 1.

THE GRID SIZE IN THE COARSEST GRID, GRID 1.

THE NUMBER OF GRIDS TO BE USED.

THE TOLERANCE. COMPUTATION TERMINATES IF THE RESIDUAL

ON THE FINEST GRID IS LESS THAN TOL.

THE MAXIMUM NUMBER OF WORK UNITS PERMITTED ON THE

FINEST GRID. COMPUTATION TERMINATES WHEN WMAX IS EXCEEDED.
IN PRACTICAL CASES, ONE SETS WMAX=30. IN THE PRESENT WORK,
WE OFTEN SET WMAX=100 SO AS TO OBSERVE THE ASYMPTOTIC
BEHAVIOR OF THE ALGORITHM.

THE GRID TO BE PRINTED AT THE END OF THE COMPUTATION.

THAT IS, WE PRINT THE MPRINT SUBSET OF THE FINAL ANSWER
ON THE GRID M.

SIZE OF ARRAY Q

MUST BE CHANGED FOR LARGE PROBLEMS BY EDITING PROGRAM
=18000 FOR DAM PROBLEM M=2,3,4,5,6

=70000 FOR DAM PROBLEM M=7

SWITCHES

NFGSW

NINTSW

NPUTSW

NRELSW

NRESSW

=1 DAM PROBLEM
=2 PROBLEM (5.3),(5.4).

=1 INJECTION. SUBROUTINE INTADD
=2 MODIFICATION #6. SUBROUTINE INTADM

CORRECTION ONLY ADDED WHEN U.NE.O. SEE (5.15).
=3 MODIFICATION #1. SUBROUTINE INTAPR

PHI=MAX (0 IU)

=1 INJECTION. SUBROUTINES PUTU AND SUBTRC
=2 MODIFICATION #2., SUBROUTINES PUTUNN AND SUBTNN.
TRANSFER 0 IF ANY NEIGHBOR ZERO.

=1 NORMAL RELAXATION. SUBROUTINE RELAX
=2 MODIFICATION #3. SUBROUTINE RELXFR
VALUES OF U CHANGED ON GRID
K<M ONLY IF U>0 ON GRID M.

=1 INJECTION. SUBROUTINE RESCAL
=2 MODIFICATION #5. SUBROUTINE RESCL1
USES WEIGHTED RESIDUALS NEAR BOUNDARY.
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RESIDUALS WITH U<0 SET EQUAL TO ZERO
=3 MODIFICATION #4. SUBROUTINE RESCAV
USES WEIGHTED RESIDUALS .

ALL THE PARAMETERS ARE SET IN THE PROGRAM, BUT THEIR VALUES
CAN BE RESET ON THE NAMELIST INPUT CARD WHICH IS READ IN

BY THE PROGRAM.

THE NAMELIST CARD MUST BE PROVIDED AS INPUT.

THE PROGRAM SETS UP STORAGE FOR THE SOLUTIONS AND RIGHT
HAND SIDES.,

THE SOLUTIONS ARE STORED IN ARRAYS 1 TO M.

THE RIGHT HAND SIDES ( OR, SOMETIMES THE RESIDUALS )
ARE STORED IN ARRAYS M+1 TO 2*M.

LA AR AR R 222222 X222 ad 222222222222 22222222 L ]

IMPLICIT DOUBLE PRECISION (A~H,0-32)

EXTERNAL G,F

COMMON /PRBDAT/Y1,Y2,A,R

COMMON /QDAT/NQSIZE,NQERR

COMMON /SWDAT/NFGSW,NINTSW,NPUTSW,NRELSW,NRESSW
NAMELIST /TNDAT/Y1,Y2,A,R,NX0,NYO,HO,M, TOL,WMAX ,MPRINT
,NFGSW, NINTSW,NPUTSW, NRELSW, NRESSW

CHARACTER ITITLE(80)

READ IN AND PRINT TITLE CARDS
FINISH READING TITLE WHEN LAST CARD IS BLANK
FINISH RUN WHEN TITLE CARD IS BLANK
NC=Q

READ 10,(ITITLE(I),I=1,80)

FORMAT (80A1)

NC=NC+1

PRINT 11,(ITITLE(I),I=1,80)
FORMAT(1H ,80A1)

DO 12 I=1,80

IF (ITITLE(I).NE.' ')GOTO 5
CONTINUE

IF(NC.EQ.1) STOP

NQSIZE=18000
NFGSW=1
NINTSW=1
NPUTSW=1
NRELSW=1
NRESSW=1
Y1=24

Y2=4

A=16
R=32,.D0/15.D0
NX0=4

NY0=6

HO=4.

M=3

TOL=2.D-8
WMAX=30,
MPRINT=1
READ (5, INDAT)
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i 115. WRITE(6, INDAT)
116. o) PRINT MODIFICATION NUMBERS
117, PRINT 100
118. 100 FORMAT( '0 *** THE FOLLOWING MODIFICATIONS WERE USED *#+* !'/)
119, IF(NINTSW.EQ.2) PRINT 106
120. IF(NINTSW.EQ.3) PRINT 101
121, IF(NPUTSW.EQ.2) PRINT 102
122. IF(NRELSW.EQ.2) PRINT 103
123, IF(NRESSW.EQ.2) PRINT 105
124. IF(NRESSW.EQ.3) PRINT 104
‘ 125, 101 FORMAT('0', 'MODIFICATION NUMBER 1')
126. 102 FORMAT('0', 'MODIFICATION NUMBER 2')
127. 103 FORMAT('0', 'MODIFICATION NUMBER 3')
128. 104 FORMAT('0', 'MODIFICATION NUMBER 4')
- 129, 105 FORMAT('0', 'MODIFICATION NUMBER 5°')
k ‘ 130. 106 FORMAT('0', 'MODIFICATION NUMBER 6')
BE 131. PRINT 110
132. 110 FORMAT( [ I XIIXI TR 1) l)
133. o SET TIME TO ZERO
} 134. CALL URTIMS(0.0)
135. CALL PFASMD (NXO0,NYO,HO,M,TOL,WMAX,G,F)
136, c PRINT ELAPSED TIME
137. T=URTIMG( 'ELAPSED TIME')
138. CALL SOLPRT(M,MPRINT) .
L 139, STOP ]
' 140. END ‘
141, c :
142. c i
143. DOUBLE PRECISION FUNCTION F(X,Y) !
144. IMPLICIT DOUBLE PRECISION (A-H,0-3Z) H
1 145. COMMON /PRBDAT/Y1,Y2,A,R ;
146. COMMON /SWDAT/NFGSW,NINTSW,NPUTSW,NRELSW,NRESSW
147. o] THIS SUBROUTINE COMPUTES THE RIGHT HAND SIDE OF THE
148. ol GOVERNING POISSON EQUATION DEL*DEL U=F,
149. GOTO( 1,2),NFGSW
3 150. c
151. c DAM PROBLEM
f 152. 1 CONTINUE
i 153. F=1.
154. RETURN
155. c
& 156. c PROBLEM OF SECTION 5: (5.3) AND (5.4)
1 157. 2 CONTINUE
158. D=2 ,5*R
‘ 159, A=DMAX1(0.D0,D-R*X~Y) .
160. B=X+Y
t1 161. C=2*%*(R**2+1)
- 162. F=(C-2.*A*A)*DCOS(B) +4*(R+1)*A*DSIN(B)+2*C
| 163. RETURN
4 164. END
& 165. c
" 167. DOUBLE PRECISION FUNCTION G(X,Y)
168. c THIS SUBROUTINE COMPUTES THE BOUNDARY DATA AND THE
, 169, c INITIAL APPROXIMATION TO THE SOLUTION U.
: 170. IMPLICIT DOUBLE PRECISION (A-H,0-Z)
i 171, COMMON /PRBDAT/Y1,Y2,A,R
!
¥t
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COMMON /SWDA.T/NFGSW,NINTSW,NPUTSW,NRELSW, NRESSW
GoTro( 1,2),NFGSW

c
(o DAM PROBLEM
C THE INITIAL APPROXIMATION IS OBTAINED BY LINEAR INTERPOLATION
C IN THE X-DIRECTION BETWEEN THE GIVEN BOUNDARY DATA.
1 CONTINUE
Gl1=.5%(Y1=-Y)**2
G2=,5%(Y2=Y)**2
IF( Y.GE.Y2) G2=0
G=(G1*(A-X)+ G2*X)/A
RETURN
C
C PROBLEM OF SECTION 5: (5.3) AND (5.4)
c INITIAL APPROXIMATION IS A PERTURBATION OF EXACT SOLUTION
2 CONTINUE
D=2.,5%*R
A=DMAX1(0.D0,D=-R*X~-Y)
B=X+Y
G=A*A* (DCOS(B)+2)
G=G+X*(3=X)*Y*(2-Y)*10
RETURN
END
C
c
SUBROUTINE PFASMD (NX0,NYO,HO,M,TOL,WMAX,U1,F)
C THIS SUBROUTINE IS THE MAIN MULTIGRID SUBROUTINE.
C IT INITIALIZES THE PROBLEM, AND REPEATEDLY CALLS
o THE SUBROUTINES RELAX,RESCAL,PUTU,CORSRE,SUBTRC,AND INTADD.
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON /QDAT/NQSIZE,NQERR
EXTERNAL U1,F
DIMENSION EPS(10)
c
c
C SET UP ARRAYS 1 TO M FOR THE SOLUTIONS
C AND ARRAYS M+1 TO 2*M FOR THE RIGHT HAND SIDES,
c AND CHECK THAT Q ARRAY IS LARGE ENOUGH
NQERR=0
DO 1 K=1,M
K2=2%**(K-1)
CALL GRDFN (K,NX0*K2+1,NY0O*K2+1,H0/K2)
1 CALL GRDFN(K+M,NX0*K2+1,NYO*K2+1,H0/K2)
PRINT 10,NQSIZE
10 FORMAT(' SIZE OF Q ARRAY = ', I10)
IF(NQERR.EQ.0)GOTO 12
PRINT 11,NQERR
11 FORMAT(' *** ERROR IN GRDFN *** ARRAY Q NOT LARGE ENOUGH ***',
* /' ARRAY Q SIZE SHOULD BE AT LEAST =', I10)
STOP
12 CONTINUE
c
C
C INITIALIZE
EPS(M)=TOL
X=M
wU=0
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CALL PUTF(M,U1,0)
CALL PUTF(2*M,F,2)
ETA=.5
DELTA=.15

START OF MAIN LOOP IN WHICH ONE GAUSS-SEIDEL PROJECTED
SWEEP ON GRID K IS MADE.

ERR=1.E30
ERRP=ERR
CALL RELSW(K,K+M,ERR)
IF(WU .LE. 0) ERRBEG=ERR
WU=WU+4 . ** (K-M)
WRITE(6,4)K,ERR,WU
FORMAT(' LEVEL',I12,' RESIDUAL NORM=', D10.3,°' WORK=', F7.3)
IF(ERR.LT.EPS(K))GOTO 2
IF (WU.GE.WMAX)RETURN
IF(K<EQ.1.0R.ERR/ERRP.LT. ETA)GO TO 3

GO TO COARSER GRID
IF( KeNE.M .OR. WU.LE.3 ) GOTO 92
FMU=0.0
IF( ERR.GT.0 ) FMU=(ERR/ERRBEG)**(1.D0/(WU~1))
PRINT 91,FMU
FORMAT(' ', 20('*'),'END OF CYCLE',20('*'),'MU = ',F8.4)
CONTINUE
CALL RESSW(K,K+M,K+M-1)
EPS (K-1)=DELTA*ERR
K=K-1
CALL PUTSW(K+1,K)
CALL CORSRE(K,K+M)
GOTO 5

GO TO FINER GRID
IF (K<EQ.M)RETURN
CALL SUBSW(K+1,K)
CALL INTSW(K,K+1)
K=K+1
GOTO 5
END

SUBROUTINE CORSRE (K, KRHS)
APPLIES THE DIFFERENCE OPERATOR ON GRID K
TO THE GRID FUNCTION IN ARRAY K, AND ADDS THE RESULT TO THE
VALUES IN ARRAY KRHS.
KRHS KRHS K K,0
B =R +A U

THE RESULT IS STORED IN ARRAY KRHS.
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON Q(18000),IST(200),IRHS(200)
CALL KEY(K,IST,1I,JJ,H)
CALL KEY(KRHS, IRHS,I1I,JJ,H)
I1=I1-1
J1=3J3-1
Do 1 I=2,11
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IR=IRHS(I)

IO=IST(1)

IM=IST(I-1)

IP=IST(I+1)

DO 1 J=2,J1
A==Q(IR+J)=Q(IO+J+1)-Q(I0+J=1)=Q (IM+J )=~Q (IP+J)
Q(IR+JI)==A-4.*Q(I0+J)

RETURN

END

SUBROUTINE GRDFN(N,IMAX,JMAX,HH)

SETS UP ARRAY N.

IMAX THE DIMENSION IN THE X DIRECTION

JMAX THE DIMENSION IN THE Y DIRECTION

HH THE GRID SIZE

THE ARRAY NST CONTAINS THE STARTING ADDRESSES OF THE ARRAYS.
THE ARRAY IMX CONTAINS THE MAXIMUM ROW NUMBERS

THE ARRAY JMX CONTAINS THE MAXIMUM COL NUMBERS

THE ARRAY H CONTAINS THE GRID SIZES.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /GRD/NST (20) , IMX(20) ,JMX (20) ,H(20)
COMMON /QDAT/NQSIZE,NQERR

DATA IQ/1/

NST(N)=IQ

IMX (N)=IMAX

JIMX (N )=JMAX

H(N)=HH

1Q=IQ+IMAX*JMAX
IF(IQ.LE.NQSIZE+1) RETURN
NQERR=IQ-1

END

SUBROUTINE INTSW(KC,KF)
INTERPOLATES CORRECTION ON COARSE GRID KC
AND ADDS TO SOLUTION ON GRID KF.
KF KF KC KF KF
) = PHI( I W + U ;U )
KC

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON /SWDAT/NFGSW,NINTSW,NPUTSW,NRELSW,NRESSW
GoTO(1,2,3) ,NINTSW

CALL INTADD(KC,KF)
RETURN

CALL INTADM(KC,KF)
RETURN

CALL INTAPR(KC,KF)
RETURN
END
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SUBROUTINE INTADD(KC,KF)
LINEARLY INTERPOLATES CORRECTION ON COARSE GRID KC
AND ADDS TO SOLUTION ON GRID KF.
KF KF KC KF KF
U =PHI(I W +U U )
KC

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON Q(18000),ISTC(200),ISTF(200)
CALL KEY(KC,ISTC,IIC,JJC,HC)

CALL KEY(KF,ISTF,IIF,JJF,HF)

DO 1 IC=2,1IC

IF=2*IC-1

JF=1

IFO=ISTF(IF)

IFM=ISTF(IF-1)

ICO=ISTC(IC)

ICM=ISTC(IC-1)

DO 1 JC=2,3JC

JF=JF+2
A=,5%(Q(ICO+JC)+Q(ICO+IC=1})

AM=,5*% (Q(ICM+JC)+Q (ICM+JC=1))
Q(IFO+JF) = Q(IFO+HIF)+Q(ICO+JC)
Q(IFM+JF) = Q(IFM+JF)+.5*(Q(ICO+JC)+Q(ICM+JC))
Q(IFO+JF-1)=Q(IFO+JF~1)+A
Q(IFM+JF=1) = Q(IFM+JF=1)+.5%(A+AM)
RETURN

END

SUBROUTINE INTADM(KC,KF)
MODIFICATION #6.

LINEARLY INTERPOLATES CORRECTION ON COARSE GRID KC
AND ADDS TO SOLUTION ON GRID KF.

CORRECTION ONLY ADDED IF SOLUTION U ON FINE GRID IS
NOT ZERO. SEE (5.15).

KF KF KC KF
U =1 U + U

KC

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON Q(18000),ISTC(200),ISTF(200)
CALL KEY(KC,ISTC,1iIC,JJC,HC)
CALL KEY(KF,ISTF,1IF,JJF,HF)
po 1 IC=2,IIC
IF=2*1IC~1
JF=1
IFO=ISTF(IF)
IFM=ISTF(IF=-1)
ICO=ISTC(IC)
ICM=ISTC(IC=1)
DO 1 JC=2,J3JC
JF=JF+2
A=,.5*%(Q(ICO+JC)+Q(ICO+IJC-1))
AM=,5* (Q(ICM+JC)+Q(ICM+JC~1))
IF(Q(IFO+JF) «NE,0)Q(IFO+JF) = Q(IFO+JF)+Q (I1CO+JC)
IF(Q(IFM+JF)+NE.O)Q(IFM+JF) = C(IFM+JF)+.5*(Q(ICO+JC)+Q(ICM+JC))
IF(Q(IFO+JF=1).NE«0)Q(IFO+JF~1)=Q(IFO+JF=1)+Aa
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IF(Q(IFM+JF=1) .NE.O)Q(IFM+JF=1) = Q(IFM+JIF=1)+.5%(A+AM)
CONTINUE

RETURN

END

SUBROUTINE INTAPR(KC,KF)
MODIFICATION #1, PHI=MAX(0,U)
LINEARLY INTERPOLATES CORRECTION ON COARSE GRID KC
AND ADDS TO SOLUTION ON GRID KF.
KF KF KC KF KF
U = PHI( I W + U ;U )
KC

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON Q(18000) ,1STC(200) ,1ISTF(200)
CALL KEY(KC,ISTC,IIC,JJC,HC)
CALL KEY (KF,ISTF,I1F,JJF,HF)
DO 1 IC=2,IIC
IF=2*%*IC-1
JF=1
IFO=ISTF(IF)
IFM=ISTF(IF=-1)
ICO=ISTC(IC)
ICM=ISTC(IC=-1)
DO 1 JC=2,J3C
JFP=JF+2
A=,.5*(Q(ICO+JC)+Q(ICO+IC=1))
=.5*% (Q{ICM+JIC)+Q(ICM+IC=1))
Q(IFO+JF) =AMAX1(0.0D0, Q(IFO+JF)+Q(ICO+JIC) )
Q(IFM+JF) =AMAX1(0.0D0, Q(IFM+JF)+.5*%(Q(ICO+JC)+Q(ICM+JIC)) )
Q(IFO+JF=1)=AMAX1(0.0D0,Q(IFO+JF~1)+A )
Q(IFM+JF-1) =AMAX1(0.0D0, Q(IFM+JF-1)+.5*(A+AM) )
RETURN
END

SUBROUTINE KEY (K, IST, IMAX,JMAX, HH)

RECOVERS THE INFORMATION ABOUT ARRAY K SET UP BY
THE SUBROUTINE GRDFN.

THE VALUE OF THE GRID FUNCTION AT THE POINT (I,J)
IS ADDRESSED AS U(IST(J)+I).

IMPLICIT DOUBLE PRECISION (A-H,0~32)
COMMON/GRD/NST(20) ,IMX(20),JMX(20),H(20)
DIMENSION IST(1)

IMAX=IMX(K)
JMAX=JMX (K)
IS=NST(K)~-IMAX-1
DO 1 I=1,IMAX
IS=IS + JMAX
IST(1)=IS

HH=H (K)

RETURN

END
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SUBROUTINE PUTF(K,F,NH)
INSERTS THE VALUES OF THE FUNCTION F
EVALUATED AT THE POINTS OF GRID K
AND MULTIPLIED BY GRIDSIZE**NH
INTO THE ARRAY K.

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON Q(18000) ,IST(600)
CALL KEY (K,IST,II,JJ,H)
H2=H* *NH
po 1 I=1,I1
po 1 J=1,3J
X=(I-1)*H
Y=(J-1)*H
Q(IST(I)+J)=F(X,Y)*H2
RETURN
END

SUBROUTINE PUTSW(KF,KC)
THIS SUBROUTINE TRANSFERS THE SOLUTION ON THE FINE GRID
KF INTO THE COARSE GRID KC.
KC,0 KC KF
U =1 U

COMMON /SWDAT/NFGSW,NINTSW,NPUTSW,NRELSW,NRESSW
GOTO(1,2),NPUTSW
CALL PUTU(KF,KC)
RETURN
CALL PUTUNN (KF,KC)
RETURN
END

SUBROUTINE PUTU(KF,KC)
THIS SUBROUTINE INJECTS THE SOLUTION ON THE FINE GRID
KF INTO THE COARSE GRID KC.
KC,0 KC KF
U =1 U
KF

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON Q(18000),IUF(200),IUC(200)
CALL KEY(KF,IUF,IIF,JJF,HF)

CALL XEY (KC,1UC,IIC,J3JC,HC)
DO 1 IC=1,IIC

IF=2*IC=1

IFO=IUF(IF)

ICO=IUC(IC)

JF=-1

DO 1 JC=1,J3JC

JF=JF+2

Q(ICO+JC)= Q(IFOHIF)
CONTINUE

RETURN

END
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514, o)
515. c
) 516. SUBROUTINE PUTUNN (KF,KC)
1 517. c MODIFICATION #2. TRANSFER 0 IF ANY NEIGHBOR ZERO.
518. IMPLICIT DOUBLE PRECISION (A-H,O0-~Z)
519. COMMON Q(18000),IUF(200),IUC(200)
520. CALL KEY (KF, IUF, IIF,JJF,HF)
521, CALL KEY (KC,1UC,IIC,JJC,HC)
522. Do 1 IC=1,IIC
i 523. IF=2*IC-1
524. IFO=IUF(IF)
525. ICO=1IUC(IC)
' 526. JF=-1
i 527. po 1 Jc=1,J3C
j 528. JF=JF+2
i 529, QTEMP= Q(IFO+JF)
; 530. IF (IC.EQ.1 +OR. IC.EQ.IIC) GO TO 1
i 531. IF (JC.EQ.1 .OR. JC.EQ.JJC) GO TO 1
L 532. IFP=IUF(IF+1)
| 533, IFM=IUF(IF-1)
; 534. IF(Q(IFP+JF-1).LE.0) QTEMP=0
f 535. IF(Q(IFP+JF+1).LE.0) QTEMP=0
536, IF(Q(IFP+JF).LE.0) QTEMP=0
537. IF(Q(IFM+JF-1).LE.0) QTEMP=0
538, IF{Q(IFM+JF+1).LE.0) QTEMP=0
j 539, IF(Q(IFM+JF).LE.0) QTEMP=0
540, IF{Q(IFO+JF=1).LE.0) QTEMP=0
i 541, IF(Q(IFO+JF+1).LE.0) QTEMP=0
542, 1 Q(ICO+JC)=QTEMP
543, RETURN
‘ 544. END
545, c
546. c
‘ 547. c ;
‘ 548. SUBROUTINE RELSW(K,KRHS,ERR) f
549. c CARRIES OUT ONE GAUSS~SEIDEL PROJECTED
' 550. c SWEEP ON THE GRID K WITH RIGHT HAND SIDE IN ARRAY KRHS.
i 551, c RETURNS WITH ERR= G-NORM OF THE DYNAMIC RESIDUALS
552, IMPLICIT DOUBLE PRECISION (A-H,O0-Z) i
553, COMMON /SWDAT/NFGSW,NINTSW,NPUTSW, NRELSW,NRESSW
554, GOTO (1,2),NRELSW
555. c
| 556 1 CALL RELAX(K,KRHS,ERR)
E | 557, RETURN
' 558. c
| 559, 2 CALL RELXFR(K,KRHS,ERR)
i 560. RETURN
561. END ;
562. c Tt
563. C
564. SUBROUTINE RELAX(K,KRHS,ERR)
565. c NORMAL RELAXATION
566 c CARRIES OUT ONE GAUSS-SEIDEL PROJECTED
567, c SWEEP ON THE GRID K WITH RIGHT HAND SIDE IN ARRAY KRHS.
568, c RETURNS WITH ERR= G=NORM OF THE DYNAMIC RESIDUALS
1 570. IMPLICIT DOUBLE PRECISION (A=-H,O0-Z)
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COMMON Q(18000) ,IST(200),IRHS(200)
CALL KEY(K,IST,II,JJ,H)
CALL KEY(KRHS,IRHS,II,JJ,H)
I1=II-1
J1=JJ-1
ERR=0.
Do 1 1=2,11
IR=IRHS(I)
I0=IST(I)
IM=IST(I-1)
IP=IST(I+1)
Do 1 J=2,J1
A=Q (IR+J)=Q (I0+J+1)-Q(I0+J=1)=Q (IM+J)=Q(IP+J)
QT=".25'A
ON=MAX({0.0,QT)
ERR=ERR+ (QN=Q (IO+J) ) **2

Q(I0+J)=QN
ERR=SQRT (ERR)/H
RETURN

END

SUBROUTINE RELXFR(K,KRHS, ERR)
“"FROZEN" RELAXATION: MODIFICATION # 3
CARRIES OUT ONE GAUSS-SEIDEL PROJECTED
SWEEP ON THE GRID K WITH RIGHT HAND SIDE IN ARRAY KRHS.
RETURNS WITH ERR= G-NORM OF THE DYNAMIC RESIDUALS
DOES NOT CHANGE VALUE OF U ON GRID K
IF K<M AND U=0 ON GRID M
IMPLICIT DOUBLE PRECISION (A-H,0-2Z)
COMMON Q(18000),IST(200),IRHS(200)
DIMENSION ISTM(100)
ASSUMES THAT U AND RHS ARE STORED ON GRIDS SEPARATED BY M
M=KRHS~K
CALL KEY(K,IST,II,JJ,H)
CALL KEY(M,ISTM,IIM,JJM,HM)
INTERV=2** (M-K)
CALL KEY(KRHS,IRHS,II,JJ,H)
I1=I1I-1
J1=3J-1
ERR=0.
Do 1 I=2,11
IR=IRHS(I)
I0=IST(I)
IZM=ISTM( 1+INTERV*(I~1))
IM=IST(I-1)
IP=IST(I+1)
po 1 J=2,J1
IF(K.EQ.M) GO TO 10
OM=0 ( IZM+1+INTERV*(J~1))
IF(QM.EQ.0) GO TO 1
CONTINUE
A=Q (IR+J)-Q(I0+J+1)=Q (10+J=1)-Q(IM+J )}~Q(IPHJ)
=".25*A
QN=MAX(0 .O.QT)
ERR=ERR+ (QN-Q (IO+J) ) **2
Q(I0+T )=QN
CONTINUE
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ERR=SQRT (ERR) /H
RETURN
END

SUBROUTINE RESSW(KF,KRF, KRC)

CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE
IN ARRAY KRF , AND TRANSFERS INTO ARRAY KRC.

BEFORE TRANSFER, THE RESIDUAL IS SCALED

BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE
FACT THAT THE GRID SIZE ON GRID KF IS HALF THE

GRIDSIZE ON GRID KC.

KRC KC KRF KF KF

R = 4*S (B ~ A U )

KF

COMMON /SWDAT/NFGSW,NINTSW,NPUTSW, NRELSW, NRESSW
GOTO (1,2,3),NRESSW

CALL RESCAL({KF,KRF,KRC)
RETURN

CALL RESCL1(KF,KRF, KRC)
RETURN

CALL RESCAV(KF,KRF,KRC)
RETURN
END

SUBROUTINE RESCAL(KF,KRF,KRC)

CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE
IN ARRAY KRF , AND INJECTS INTO ARRAY KRC.

BEFORE INJECTION, THE RESIDUAL IS SCALED

BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE
FACT THAT THE GRID SIZE ON GRID KF IS HALF THE

GRIDSIZE ON GRID KC.

KRC KC KRF KF KF

R = 4*S ( B - A U )

KF

IMPLICIT DOUBLE PRECISION (A-H,0-3)
COMMON Q(18000),IUF(200),IRF(200),IRC(200)
CALL KEY(XF,IUF,IIF,JJF,HF)

CALL KEY(KRF,IRF,IIF,JJF,HF)
CALL KEY(KRC,IRC,IIC,JJC,HC)
IIC1=IIC~-1

JIC1=3JC-1

DO 1 IC=2,IIC1

ICR=IRC(IC)

IF=2*IC-1

JF=1

IFR=IRF(IF)

IFO=IUF(IF)

IFM=IUF(IF-1)

IFP=IUF(IF+1)

DO 1 JC=2,33C1

JF=JF+2
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S=Q (IFO+JF+1)+Q (IFO+JF=1)+Q (IFM+JF)+Q (IFP+JF)
Q(ICRWIC)=4.*(Q(IFR+JF)~S+4.*Q(IFO+IF))
RETURN

END

SUBROUTINE RESCL1 (KF,KRF,KRC)
MODIFICATION #5 UPDATED JUNE 23 1980
USES WEIGHTED RESIDUALS NEAR THE BOUNDARY
CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE
IN ARRAY KRF , AND INJECTS INTO ARRAY KRC.
BEFORE INJECTION, THE RESIDUAL IS SCALED
BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE
FACT THAT THE GRID SIZE ON GRID KF IS HALF THE
GRIDSIZE ON GRID KC.
KRC KC KRF KF KF
R = 4*I (B - A $) )
KF

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON Q(18000),IUF(200),IRF(200),IRC(200)
DIMENSION R(9)
CALL KEY(KF,IUF,IIF,JJF,HF)
CALL KEY(KRF, IRF,IIF,JJF,HF)
CALL KEY(KRC,IRC,IIC,JJC,HC)
IIC1=IIC-1
JJIC1=JJIC-1
DO 1 IC=2,IIC1
ICR=IRC(IC)
IF=2*IC~-1
JF=1
IFR=IRF(IF)
IFO=IUF(IF)
IFM=IUF(IF-1)
IFP=IUF(IF+1)
DO 1 JC=2,JJC1
JF=JF+2
IF(Q(IFO+JF) .EQ.0)GOTO 2
IF(Q(IFP"‘JF"’“).GT.O oANDo Q(IFP+JF'1).GT.0 -AND-
Q(IFO+JF+1).GTQO -ANDO Q(IFO"’JF")OGT.O .AND.
Q(IFM+JF+1) .GT«0 .AND. Q(IFM+JF=1).GT.0 .AND.
Q(IFM+JF )+GT+0 +AND. Q(IFP+JF ) .GT.0 )GOTO 2
N=0
DO 3 I1=1,3
I=IF+11=2
DO 3 J1=1,3
J=JF+J1-2
N=N+1
IR=IRF(I)
I0=IUF(I)
IM=IUF(I~-1)
IP=IUF(I+1)
S=Q (I0+T+1)+Q(I0+T=1)+Q (IM+JT )+Q (IP+J)
S=Q (IR+J)+4*Q (I0+J)~S
IF(Q(I0O+J).EQ.0)S=0
R(N)=s
CONTINUE
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i 742. Q(ICR+JIC)=R(5)+.5* (R(2)+R(4)+R(6)+R(8)+
743. 1 «5*(R(1)+R(3)+R(7)+R(9) ))
744. GOTO 1
! 745. 2 $=Q(IFO+JF+1)+Q (IFO+JF~1)+Q (IFM+JF)+Q (IFP+JF)
746. Q(ICR+JIC)=4.* (Q(IFR+JF)~S+4 .*Q(IFO+JF))
| 747. 1 CONTINUE
! 748. RETURN
749. END b
750. C 1
751. o)
752. SUBROUTINE RESCAV(KF,KRF,KRC)
753. c MODIFICATION #4
‘ 754. c AVERAGES RESIDUALS OVER NEIGHBOURING POINTS
| 755. IMPLICIT DOUBLE PRECISION (A-H,0-Z)
' 756. COMMON Q(18000),IUF(200),IRF(200),IRC(200)
i 757, CALL KEY(KF,IUF,IIF,JJF,HF)
) 758. CALL KEY (KRF,IRF,I1IF,JJF,HF)
| 759. CALL KEY (KRC,IRC,IIC,JJC,HC)
1 { 760. c CLEAR COARSE GRID
o 761. Do 9 1=1,IIC
762, ICR=IRC(I)
763. PO 9 J=1,J3C
764. 9 Q(ICR+J)=0.
765. c
766. IIF1=I1F-1
767. JIF1=JJF-1
768. DO 100 IF=2,IIF1
769, IC=(IF+1)/2
| 770. IL=IF+1-2*IC
771. ICR=IRC(IC)
772, IFR=IRF(IF)
773. IFO=IUF(1F)
774. IFM=IUF(IF-1)
775. IFP=IUF(IF+1)
776. DO 100 JF=2,JJF1
777. S=Q (IFO+JF+1)+Q(IFO+JF=1)+Q (IFM+JF)+Q (IFP+JF)
' 778. RES=(Q(IFR+JF)=S+4.*Q(IFO+JF))
‘ 779. JC=(JF+1) /2
780. JL=JF+1=2*JC
781. K=2*IL+JL+1
X 782. Go T0 (1,2,3,4),K
783. 1 Q(ICR+JC)=Q(ICR+JC)+RES
¥ 784. GO TO 100
785. 2 RES=RES/2
786 . Q(ICR+JC)=Q(ICR+JC)+RES
787. Q (ICR+JC+1)=Q{ICR+JC+1)+RES
788. GO TO 100
789. 3 RES=RES/2
790. Q(ICR+JC)=Q(ICR+JC)+RES
791, ICR1=IRC(IC+1)
792. Q(ICR143C)=Q (ICR1+JC) +RES
793, GO TO 100
704, 4 RES=RES/4
795, Q(ICR+JC)=Q( ICR+JC)+RES
796. Q(ICR+JC+1)=Q (ICR+JC+1)+RES
797. ICR1=IRC(IC+1)
798. Q(ICR1+JC)=Q(ICR1+JC)+RES
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: | 799, Q(ICR1+JC+1)=Q (ICR1+JC+1)+RES
f ; 800. GO TO 100 1
‘ 801. 100 CONTINUE 1
802. RETURN i
803. END ‘
i 804. c
805. o
| 806. SUBROUTINE SOLPRT(M,MPRINT) £
‘ ‘ 807. c PRINTS THE ARRAY M ON THE SUBARRAY MPRINT. '
; 808. c {
i : 809. IMPLICIT DOUBLE PRECISION (A-H,0-2) ]
810. COMMON Q(18000),IST(600) ]
: 811. DIMENSION QTEM(100) {
; 812. CALL KEY (M,IST,II,JJ,H) '
' 813. INTERV=2** (M~MPRINT) i
P 814. DO 20 J=JJ,1,-INTERV
. 815. L=0 ;
- 816. DO 10 I=1,II,INTERV
P 817. c X AND Y ARE NOT PRINTED HERE, BUT ARE COMPUTED IN ;
{ 818. c CASE A LATER VERSION NEEDS THEM. ;
P 819, X=(I-1)*H L3
820. Y=(J-1)*H
821, L=L+1
822, QTEM(L)=Q(IST(I)+J)
823. 10 CONTINUE '
824. PRINT *,(QTEM(LL),LL=1,L)
825. 20 CONTINUE
826. RETURN 1
! 827. END
828. c
829. c
g 830. SUBROUTINE SUBSW(KF,KC) j
i 831. c THIS SUBROUTINE COMPUTES THE VALUE TRANSFERRED FROM GRID KF TO
832. o GRID KC AND SUBTRACTS IT FROM THE SOLUTION ON GRID KC.
833. o KC KC KC KF
834. o W =U -1I U
‘ 835. c KF
836. c
837. COMMON /SWDAT/NFGSW ,NINTSW,NPUTSW , NRELSW , NRESSW
838. GOTO(1,2) ,NPUTSW
839. 1 ~ALL SUBTRC(KF,XC)
840. RETURN
. 841. 2 CALL SUBTNN (KF,KC) ]
% 842. RETURN :
g 843. END !
| 844. c 3
i 845. c
846. SUBROUTINE SUBTRC(KF,KC)
847. o THIS SUBROUTINE COMPUTES THE VALUE INJECTED FROM GRID KF TO
848. o GRID KC AND SUBTRACTS IT FROM THE SOLUTION ON GRID KC.
849. o KC KC KC KF
850. o W =U =-1I U
851. o KF
852. c
853. IMPLICIT DOUBLE PRECISION (A-H,0-~2Z)
854. COMMON Q(18000),IUF(200),IUC(200)
CALL KEY(KF, IUF,IIF,JJF,HF)
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CALL KEY(KC,I1UC,IIC,JJC,HC)
DO 1 IC=1,IIC

IF=2*IC-1

IFO=IUF(IF)

ICO=IUC(IC)

JF==1

DO 1 JC=1,33C

JF=JF+2
Q(ICO+JIC)=Q(ICOHIC)~Q(IFOHIF)
CONTINUE

RETURN

END

SUBROUTINE SUBTNN(KF,KC)
MODIFICATION #2. TRANSFER 0 IF ANY NEIGHBOR ZERO.
THIS SUBROUTINE COMPUTES THE VALUE INJECTED FROM GRID KF TO
GRID KC AND SUBTRACTS IT FROM THE SOLUTION ON GRID KC.
KC KC KC KF
w =U -1 U
KF

IMPLICIT DOUBLE PRECISION (A-H,0-2Z)
COMMON Q(18000) ,IUF(200),IUC(200)
CALL KEY(KF,IUF,IIF,JJF, HF)

CALL KEY(KC,IUC,IIC,JJC,HC)
DO 1 IC=1,IIC

IF=2*IC-1

IFO=IUF(IF)

ICO=IUC(IC)

JF=-1

DO 1 JC=1,J3JC

JF=JF+2

QTEMP= Q(IFO+JF)

IF (IC.EQ.1 .OR. IC.EQ.IIC) GO TO 1

IF (JC.EQ.1 .OR. JC.EQ.JJC) GO TO 1

IFP=IUF(IF+1)

IFM=IUF(IF=-1)

IF(Q(IFP+JF-1).LE.0) QTEMP=0

IF(Q(IFP+JF+1).LE.0) QTEMP=0

IF(Q(IFPHJF) .LE.0) QTEMP=0

IF(Q(IFM+JF=-1).LE.0) QTEMP=0

IF(Q(IFM+JF+1).LE.0) QTEMP=0

IF(Q(IFM+JF).LE.0) QTEMP=0

IF(Q(IFO+JF-1).LE.0) QTEMP=0

IF(Q(IFO+JF+1).LE.0) QTEMP=0
Q(ICO+JC)=Q(ICO+JC)-QTEMP
RETURN
END
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J 1. c 2 I XY RIS R ZS SRS SRR EZZS SRR AR RER SRS 22222 X2 2 R 2 2 X J
[ 2. c
3. C THIS PROGRAM SOLVES THE PROBLEM OF POROUS FLOW THROUGH A
! 4. C RECTANGULAR DAM OF HEIGHT Y1 AND WIDTH A.
5. c THE RESERVOIR TO THE RIGHT OF THE DAM IS OF HEIGHT Y2.
i 6. c
; 7. c WRITTEN BY ACHI BRANDT AND COLIN CRYER AUGUST 1980
: 8. c
4 9, c THIS PROGRAM WAS USED TO COMPUTE THE RESULTS IN
| 10. c SECTION 6 OF THE MRC REPORT. )
: 1. c
12, o ADDITIONAL PARAMETERS USED ARE:
13. c NX0 THE NUMBER OF GRID INTERVALS IN THE X-DIRECTION IN
14. c THE COARSEST GRID, GRID 1.
‘ 1s. c NYO THE NUMBER OF GRID INTERVALS IN THE Y-DIRECTION IN
] 16. c THE COARSEST GRID, GRID 1.
‘ 17. ¢ HO THE GRID SIZE IN THE COARSEST GRID, GRID 1.
4 18. c M THE NUMBER OF GRIDS TO BE USED.
! 19. c LIN THE STARTING GRID. LIN.GE.2
4 20. c TOL THE TOLERANCE
21. c RATIO TOLERANCE ON GRID L IS TOLL=TOL*RATIO**L
22, c WMAXM THE MAXIMUM NUMBER OF WORK UNITS PERMITTED ON THE
23, c FINEST GRID. COMPUTATION TERMINATES WHEN WMAXM IS
24. c EXCEEDED.
25. c WMAX THE MAXIMUM NUMBER OF WORK UNITS PERMITTED ON THE
26. c GRID L<M. COMPUTATION ON GRID L TERMINATES WHEN WMAX IS
27. c EXCEEDED.
28. c MPRINT THE GRID TO BE PRINTED AT THE END OF THE COMPUTATION.
29. c THAT 1S, WE PRINT THE MPRINT SUBSET OF THE FINAL ANSWER !
30. c ON THE GRID M.
31. c NQSIZE SIZE OF ARRAY Q
32. c MUST BE CHANGED FOR LARGE PROBLEMS BY EDITING PROGRAM
33, c =18000 FOR DAM PROBLEM M=2,3,4,5,6
34. c NR1 AFTER NR1 RELAXATIONS ON THE GRID K+1 THERE IS A
3s, c TRANSFER TO GRID K.
36. c NR2 AFTER A TOTAL NUMBER OF NR2 RELAXATIONS ON GRID X
' 37. c THERE IS A TRANSFER TO GRID K+1
; 38. c NCYC MAXIMUM NUMBER OF CYCLES ON LEVEL L, LIN< L<M
' 39, c NCYCLN MAXIMUM NUMBER OF CYCLES ON LEVEL LIN
40. c NCYCM  MAXIMUM NUMBER OF CYCLES ON LEVEL M
41. c ETA IF ERR.GE.ETA*ERRP GO TO COARSER GRID
42, c DELTA  EPS(K-1)=DELTA*(ERROR ERR ON GRID K)
43, c PREC EPS (L ) =MAX (PREC*TAU (L-1) , TOL*RATIO**L)
44. c PRECM  EPS(M)=MAX (PRECM*TAU(M-1),TOL*RATIO**M)
45. c
46. c WE CAN ALSO DO TAU EXTRAPOLATION:
i 47. c ITAU IF ITAU=1 DO TAU EXTRAPOLATION
48, c PT ORDER OF EXTRAPOLATION
[ 49. c '
| 50. c SWITCHES ;
4 51, c ]
J 52. c NFGSW USED IN SUBRUTINES F,G,SOLRED :
; 53, c NFGSW =1 DAM PROBLEM
| 54. c =2 PROBLEM (5.3),(5.4).
! 55. c
‘ 56. c
57. c NINTSW =1 INJECTION. SUBROUTINE INTADD
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=2 MODIFICATION #6. SUBROUTINE INTADM
CORRECTION ONLY ADDED WHEN U.NE.0. SEE (5.15).

NRESSW =1 INJECTION. SUBROUTINE RESCAL
=2 MODIFICATION #5. SUBROUTINE RESCL1
USES WEIGHTED RESIDUALS NEAR BOUNDARY.
RESIDUALS WITH U<0 SET EQUAL TO ZERO

ALL THE PARAMETERS ARE SET IN THE PROGRAM, BUT THEIR VALUES
CAN BE RESET ON THE NAMELIST INPUT CARD WHICH IS READ IN
BY THE PROGRAM.

THE NAMELIST CARD MUST BE PROVIDED AS INPUT.

THE PROGRAM SETS UP STORAGE FOR THE SOLUTIONS AND RIGHT
HAND SIDES.

THE SOLUTIONS ARE STORED IN ARRAYS 1 TO M.

THE RIGHT HAND SIDES ( OR, SOMETIMES THE RESIDUALS )
ARE STORED IN ARRAYS M+1 TO 2*M,

THE EXACT SOLUTION (WHEN KNOWN) IS STORED IN GRID NGRSOL
THE VALUES OF TAU ARE STORED IN GRIDS 2M+1 TO 3M-t1

2 2RSS LR ARl a2l a2 i iR 2l s

IMPLICIT DOUBLE PRECISION (A~H,0-2)

EXTERNAL G,F

COMMON /PRBDAT/Y1,Y2,A,R

COMMON /QDAT/NQSIZE, NQERR

COMMON /SOLTAU/M,NGRSOL, PT

COMMON /SWDAT/NFGSW,NINTSW,NRESSW

NAMELIST /INDAT/NX0,NYO,HO,M,LIN,NR1,NR2,ETA,DELTA
,TOL, RATIO, PREC,PRECM, WMAX , WMAXM, NCYC,NCYCLN,NCYCM, ITAU, PT,
MPRINT,Y1,Y2,A,R

NFGSW,NINTSW,NRELSW, NRESSW

CHARACTER ITITLE(80)

READ IN AND PRINT TITLE CARDS
FINISH READING TITLE WHEN LAST CARD IS BLANK
FINISH RUN WHEN TITLE CARD IS BLANK
PRINT 18

FORMAT (1H1)

NC=0

READ 10,(ITITLE(I1),I=1,80)

FORMAT (80A1)

NC=NC+1

PRINT 11,(ITITLE(I),I=1,80)
FORMAT(1H ,80A1)

po 12 1=1,80

IF (ITITLE(I).NE.' ')GOTO 5
CONTINUE

IF(NC.EQ.1) STOP

NQSIZE=18000
NFGSW=1

NINTSW=1
NRESSW=1
Y1=24
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Y2=4

A=16

R=32.D0/15.D0

NX0=2

NYO0=3

HO=8.

M=6

LIN=2

NR1=2

NR2=3

ETA=10.

DELTA=0

TOL=0

RATIO=1

PREC=0

PRECM=1

WMAX=30.

WMAXM=40

NCYC=1

NCYCLN=3

NCYCM=10

ITAU=0

PT =2

MPRINT=2

READ (5, INDAT)

WRITE (6, INDAT)

PRINT MODIFICATION NUMBERS

PRINT 100

FORMAT( '0 *** THE FOLLOWING MODIFICATIONS WERE USED *** '/)

IF(NINTSW.EQ.2) PRINT 106

IF (NINTSW.EQ.3) PRINT 101

IF(NRELSW.EZ.2) PRINT 103

IF(NRESSW.EQ.2) PRINT 105

IF(NRESSW.EQ.3) PRINT 104

FORMAT('0', 'MODIFICATION NUMBER 1')

FORMAT('0', °*MODIFICATION NUMBER 3')

FORMAT('0', 'MODIFICATION NUMBER 4')

FORMAT('0', 'MODIFICATION NUMBER 5')

FORMAT('0', 'MODIFICATION NUMBER 6')

PRINT 110

FORMAT( I Shhhwhrbtihdh l)

SET TIME TO ZERO

CALL URTIMS(0.0)

CALL PFMG(NXO0,NYO,HO,LIN,NR1,NR2,ETA,DELTA
,TOL, RATIO, PREC, PRECM, WMAX ,WMAXM, NCYC, NCYCLN, NCYCM, ITAU,
MPRINT, G, F)

T=URTIMG('ELAPSE')

FORMAT(1HO, ' GRID-M SOLUTION',//)

PRINT 19

CALL SOLPRT(M,MPRINT)

PRINT 20

FORMAT(1H1, ' GRID-7 SOLUTION',//)

CALL SOLPRT (NGRSOL,MPRINT)

STOP

END
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172. DOUBLE PRECISION FUNCTION F(X,Y)
173. IMPLICIT DOUBLE PRECISION (A-H,0-Z)
174. COMMON /PRBDAT/Y1,Y2,A,R
175. COMMON /SWDAT/NFGSW,NINTSW,NRESSW
176. c THIS SUBROUTINE COMPUTES THE RIGHT HAND SIDE OF THE
177. c GOVERNING POISSON EQUATION DEL*DEL U=F.
178. GOTO( 1,2),NFGSW
179. c
180. c DAM PROBLEM
181. 1 CONTINUE
| 182, F=1.
183, RETURN
184. c
185. o) PROBLEM OF SECTION 5: (5.3) AND (5.4)
186. 2 CONTINUE
187. D=2.5*R
‘ 188. A=DMAX1(0.D0,D-R*X-Y)
189. B=X+Y
190. C=2*(R**2+1)
191. F=(C=2.*A*A)*DCOS(B) +4*(R+1)*A*DSIN(B)+2*C
i 192. RETURN
193, END
] 194. c
! 195. c
- 196, DOUBLE PRECISION FUNCTION G(X,Y)
197. c THIS SUBROUTINE COMPUTES THE BOUNDARY DATA AND THE
198, c INITIAL APPROXIMATION TO THE SOLUTION U.
, 199, IMPLICIT DOUBLE PRECISION (A-H,0~Z)
‘ 200, COMMON /PRBDAT/Y1,Y2,A,R
201. COMMON /SWDAT/NFGSW,NINTSW, NRESSW
202, coTo( 1,2),NFGSW
203. c
204. c DAM PROBLEM
205. c THE INITIAL APPROXIMATION IS OBTAINED BY LINEAR INTERPOLATION
206, c IN THE X-DIRECTION BETWEEN THE GIVEN BOUNDARY DATA.
207. 1 CONTINUE
, 208. G1=,5%(Y1-Y)**2
! 209. G2=,5%(Y2-Y)**2
[ 210. IF( Y.GE.Y2) G2=0
211, G=(G1*(A=~X)+ G2*X)/A
212. RETURN
213. c
214. c PROBLEM OF SECTION 5: (5.3) AND (5.4)
i 215. c INITIAL APPROXIMATION IS A PERTURBATION OF EXACT SOLUTION
| 216. 2 CONTINUE
| 217. D=2.5*R
| 218. A=DMAX1(0.D0,D-R*X~Y)
219. B=X+Y
220. G=A*A* (DCOS(B)+2)
1 221. G=G+X* (3~X) *Y* (2-Y)*10
1 222, RETURN
223, END
3 224. c
] 225. SUBROUTINE PFMG(NX0,NY(,HO,LIN,NR1,NR2,ETA,DELTA
226, * ,TOL,RATIO,PREC,PRECM,WMAX,WMAXM,NCYC,NCYCLN,NCYCM, ITAU,
. ' 227. * MPRINT,Ut,F)
15, : 228, c THIS SUBROUTINE IS THE MAIN FULL MULTIGRID SUBROUTINE.
3 -80-
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IT INITIALIZES THE PROBLEM, AND REPEATEDLY CALLS
THE SUBROUTINES RELAX,RESCAL,PUTU,CORSRE,SUBTRC,AND INTADD.
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /QDAT/NQSIZE, NQERR

EXTERNAL U1,F

DIMENSION EPS(10),IR2(10)

COMMON /SOLTAU/M,NGRSOL, PT

SET UP ARRAYS 1 TO M FOR THE SOLUTIONS
AND ARRAYS M+1 TO 2*M FOR THE RIGHT HAND SIDES,
AND ARRAYS 2M+1 TO 3M-1 FOR TAU ARRAYS AND
SET ASIDE SPACE FOR GRID-7 SOLUTION IN 3M=NGRSOL GRID
AND CHECK THAT Q ARRAY IS LARGE ENOUGH
NQERR=0
DO 1 K=1,M
K2=2%*(K~1)
CALL GRDFN(K,NX0*K2+1,NY0*K2+1,H0/K2)
CALL GRDFN (K+M,NX0*K2+1,NYO*K2+1,H0/K2)
CALL GRDFN(K+2*M,NX0*KX2+1,NYO*K2+1,H0/K2)
NGRSOL=3*M
PRINT 90,NQSIZE
FORMAT (' SIZE OF Q ARRAY = ', I10)
IF(NQERR.EQ.0)GOTO 92
PRINT 91,NQERR
FORMAT(' *** ERROR IN GRDFN *** ARRAY Q NOT LARGE ENOUGH *#*',
/.' ARRAY Q SIZE SHOULD BE AT LEAST =', I10)
STOP
CONTINUE

CALL SOLRED

INITIALIZE

WU=0

CALL PUTF(LIN,U1,0)
DO 10 L=LIN,M

BEGIN NEW FINEST LEVEL

PRINT 6,L

FORMAT (1HO0,60 (1H.) ,I3,2X,60 (1H.)/)
CALL PUTF(L+M,F,2)
TOLL=TOL* (RATIO**L)
EPS(L)=TOLL

WU=,25*WU

NCYCL=NCYC
IF(L.EQ.M)NCYCL=NCYCM
1CYC=0

WMAXL=WMAX
IF(L.EQ.M)WMAXL=WMAXM
PRECL=PREC
IF(L.EQ.M)PRECL=PRECM

K=L
IR2(L)}=0
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BEGIN A NEW WORK LEVEL

IR1=0
ERR=1,E30

RELAX ONCE ON GRID K

ERRP=ERR

CALL RELAX (K, K+M,ERR)

WU=WU+4 -** (K‘L)

IR1=IR1+1

IR2(K)=IR2(K)+1
WRITE(6,40)K, ERR,WU, IR1,IR2(K)

FORMAT(' LEVEL',I12,°' RESIDUAL NORM=', D10.3,' WORK=',

,' IR1= ',12,' IR2(K)=',I2)

DECIDE WHICH GRID TO USE NEXT
IF (WU.GE.WMAXL)GOTO 20
IF(ERR.LT.EPS(K))GOTO 2
IF(IR2(K).NE.NR2)GOTO 8

IF( K.LT.L)GOTO 2

ICYC=ICYC+1

IF(ICYC.EQ.NCYCL .AND. L.NE.LIN)GOTO 20
IF(ICYC.EQ.NCYCLN .AND. L.EQ.LIN)GOTO 20
IR2(L)=0

IR1=0

IF(IR1.EQ.NR1)GOTO 4
IF(IR1.EQ.1.0R.ERR.LT. ERRP*ETA)GO TO 3

GO TO COARSER GRID

IF(XK.EQ.1)GOTO 3

CALL RESSW(K,K+M,K+M=1)

CALL RESBW(K,XK+M,K+2*M-1)

EPS(K~-1)=DELTA*ERR

K=K-1

CALL PUTU(K+1,K)

CALL CORSRE (K,K+M)

ITAUEX=0

IF({ (ITAU.EQ. 1) «AND. (L.GT«LIN) .AND. (K.EQ.L-1) ) ITAUEX=1
CALL TAUCAM(K,K+M,K+2*M, ITAUEX, TAUGNM)

PRINT 60,TAUGNM,K

FORMAT (50X, 'GREEN NORM OF TAU~-Z =',E12.3,5X,'K=',12)
IF(K.EQ.(L=1))EPS(L)=DMAX1(PRECL*TAUGNM, TOLL)
IR2(K)=0

GOTO S

GO TO FINER GRID
IF(K.EQ.L)GOTO 20
CALL SUBTRC(K+1,K)
CALL INTSW(K,K+1)
K=K+1

GOTO S

FINISHED WITH LEVEL L

F7.3
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343. 20 CONTINUE
344. c
345. c THE NEXT SEVEN STATEMENTS COMPUTE THE GREEN NORM OF TAU
346. o AND THE GREEN AND L-INFINITY NORMS OF THE ERROR
347. c ( IF ACCURATE SOLUTION IS KNOWN )
348. 11 CALL RESSW(L,L+M,L+M=1)
349. CALL RESBW(L,L+M,L+2%*M-1)
350, CALL PUTU(L,L-1)
351. CALL CORSRE(L~1,L-1+M)
352, CALL TAUCAM(L~1,L-1+M,L=-1+2%*M,0,TAUGNM)
353. K=L~-1
354. PRINT 60,TAUGNM,K
355. CALL DIFFMX(L)
357. c ;
358, IF(L.EQ.M)GOTO 10 ¢
359, CALL INTRP3(L,L+1) ;
360. CALL PUTB(U1,L+1) !
361. c g
362. 10 CONTINUE ‘
363. RETURN :
364. END !
365. c ;
366. c {
367. SUBROUTINE CORSRE(K,KRHS) i
368. C APPLIES THE DIFFERENCE OPERATOR ON GRID X f
369. c TO THE GRID FUNCTION IN ARRAY K, AND ADDS THE RESULT TO THE i
370. c VALUES IN ARRAY KRHS. ¢
371. c KRHS KRHS X X,0 !
372. c B = R +A U
373. c
374. c THE RESULT IS STORED IN ARRAY KRHS.
375. IMPLICIT DOUBLE PRECISION (A~H,0-Z) ,
376. COMMON Q{18000 ),IST(200),IRHS(200)
377. CALL KEY(K,IST,II,JJ,H)
378. CALL KEY(KRHS,IRHS,II,JJ, H)
379. I1=11-1
380. J1=33-1
381, DO 1 I=2,I1

, 3s2. IR=IRHS(T)

2 383. I0=IST(I)

) 384, IM=IST(I-1)

| 38s. IP=IST(I+1)

1 ig6. Do 1 J=2,J1
387. A==Q (IRHKJ)=Q{I0+T+1)=Q (I0+I-1)-Q (IM+J )-Q (IP+J)

y | 3ss. 1 Q(IR+J)==A=4.%Q(I0+J)

‘ 389. RETURN
390. END
391, c
392, c
393, SUBROUTINE DIFFMX(K)
394, c NOT TIMED
395. c COMPARES SOLUTION ON GRID K WITH ACCURATE SOLUTIUN
396. c STORED IN GRID NGRSOL
397. IMPLICIT DOUBLE PRECISION (A-H,0-Z)
398. COMMON Q(18000),IST(200),ISTA(200)

b 399. COMMON /SOLTAU/M,NGRSOL, PT
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TIME=URTIMG(0)
CALL KEY(K,IST,II,JJ,H)

CALL KEY (NGRSOL,ISTA,IIA,JJA,HA)
DIFMX=0.

DIFGNM=0

SOLMX=0.

SOLGNM=0

INTERV=(IIA-1)/(II-1)

Do 1 1=1,11

X=(I~-1)*H

IA={I-1)*INTERV+1

po 1 J=1,33

Y=(J~1)*H

JA=(J=1)*INTERV+1
DIF=ABS(Q(ISTA(IA)+JA) =Q(IST(I)+J))
DIFGNM=DIFGNM+DIF*DIF
SOL=ABS(Q(ISTA(IA)+JA))
SOLGNM=SOLGNM+SOL*SOL
SOLMX=AMAX1 (SOL, SOLMX )

DIFMX=AMAX1 (DIF,DIFMX)

DIFGNM=SQRT (DIFGNM) /H

PRINT 101,DIFMX,DIFGNM

FORMAT(15X,' SOLUTION ERROR: L INFINITY NORM =',E13.5,
5X,'GNORM = ',E13.5)
SOLGNM=SQRT ( SOLGNM) /H

PRINT 102, SOLMX, SOLGNM

FORMAT(15X,' SOLUTION : L INFINITY NORM =',Ei3.5,
SX,"GNORM = ‘',E13.5)

PRINT 103,DIFMX/SOLMX,DIFGNM/SOLGNM
FORMAT(15X,' RELATIVE ERROR: L INFINITY NORM =',E13.5,
5X,'GNORM = ',E13.5)

CALL URTIMS(TIME)

RETURN

END

SUBROUTINE GRDFN(N, IMAX,JMAX,HH)

SETS UP ARRAY N.

IMAX THE DIMENSION IN THE X DIRECTION

JMAX THE DIMENSION IN THE Y DIRECTION

HH THE GRID SIZE

THE ARRAY NST CONTAINS THE STARTING ADDRESSES OF THE ARRAYS.
THE ARRAY IMX CONTAINS THE MAXIMUM ROW NUMBERS

THE ARRAY JMX CONTAINS THE MAXIMUM COL NUMBERS

THE ARRAY H CONTAINS THE GRID SIZES.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON /GRD/NST{(20), IMX{(20) ,IMX{20) ,H(20)
COMMON /QDAT/NQSIZE, NQERR

DATA IQ/1/

NST(N)=IQ

IMX (N)=IMAX

JMX (N )=JMAX

H(N)=HH

IQ=IQ+IMAX*JMAX

IF(IQ.LE.NQSIZE+1) RETURN

NQERR=ID-1
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457. END
§ 458. c
E | 459, c
| 460. SUBROUTINE INTSW(KC,KF)
] 461. c INTERPOLATES CORRECTION ON COARSE GRID KC
; 462. c AND ADDS TO SOLUTION ON GRID KF.
. 463. c KF KF KC KF KF
l 464. C U = PHI( I W + U ;U )
; 465. c KC
‘ 466. c
¥ | 467. IMPLICIT DOUBLE PRECISION (A~H,0-Z)
; 468. COMMON /SWDAT/NFGSW,NINTSW, NRESSW
469. GOTO(1,2),NINTSW
470. c
, an. 1 CALL INTADD(KC,KF)
' 472, RETURN
1 473. c
f 474, 2 CALL INTADM(KC,KF)
i 475. RETURN
* 476. END
; 471. c
478. c
479, SUBROUTINE INTADD (KC,KF)
480. c LINEARLY INTERPOLATES CORRECTION ON COARSE GRID KC
481. c AND ADDS TO SOLUTION ON GRID KF.
482. c KF KF XC KF KF
) 483. C U = PHI( I W + U ; U )
| : 484. c KC
485. c
486. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
487. COMMON Q(18000),ISTC(200),ISTF(200)
488. CALL KEY(KC,ISTC,IIC,JJC,HC)
489. CALL KEY (KF,ISTF,11F,JJF,HF)
490. DO 1 IC=2,IIC
491. IF=2*IC-1
492. JF=1
493. IFO=ISTF(IF)
494. IFM=ISTF(IF-1)
. 495. 1CO=ISTC(IC)
; 496. ICM=ISTC(IC=1)
3 497. DO 1 JC=2,J3C
| 498. JF=JF+2
[ 499, A=.5%(Q(ICO+IC)+Q (ICO+IC=1))
500. =,5%(Q(ICM+JC)+Q (ICM+JC=1))
501. Q(IFO+JF) = Q(IFO+JF)+Q(ICO+IC)
502. Q(IFM+JF) = Q(IFM+JF)+.5%(Q(ICO+JC)+Q(ICM+IC))
503. Q(IFORIF-1)=Q(IFO+JF-1)+A
504. 1 Q(IFM+JF=1) = Q(IFM+JF=1)+.5*(A+AM)
505. RETURN
506. END
507. c
_ 508. SUBROUTINE INTADM(KC,KF)
{ 509. c MODIFICATION #6.
19 510. c LINEARLY INTERPOLATES CORRECTION ON COARSE GRID KC
511. c AND ADDS TO SOLUTION ON GRID KF.
512. c CORRECTION ONLY ADDED IF SOLUTION U ON FINE GRID IS
513. c NOT ZERO. SEE (5.15).
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514. c KF KF KC KF
515, c U =1 U +U
516. c KC
517. C
518. IMPLICIT DOUBLE PRECISION (A-H,0-2)
519, COMMON Q(18000),ISTC(200),ISTF(200)
520, CALL KEY (KC, ISTC,IIC,JJC,HC)
521. CALL KEY (KF,ISTF,IIF,JJF,HF)
522, DO 1 1C=2,IIC
523, IF=2*IC-1
524. JF=1
! 525. IFO=ISTF(IF)
‘ 526, IFM=ISTF(IF~1)
| 527. ICO=ISTC(IC)
528, ICM=ISTC(IC-1)
| 529. DO 1 JC=2,33C
’ 530. JF=JF+2
! J 531, A=,5*(Q(ICO+IC)+Q(ICO+IC-1))
;_i 532. =.5% (Q (ICM+JC)+Q(ICM+JIC-1))
o 533. IF(Q(IFO+JF) .NE.0)Q(IFO+JF) = Q(IFO+JF)+Q(ICO-HIC)
| 534. IF(Q(IFM+JF) .NE.O)Q(IFM+JF) = Q(IFM+JF)+.5%(Q(ICO+JC)+Q(ICM+JC))
‘ 535, IF (Q (IFO+JF=1) .NE. 0)Q(IFOhIJF=1)=Q(IFO+JF~1)+A
536. IF(Q(IFM+JF=1) .NE.0)}Q(IFM+JF-1) = Q(IFM+JF-1)+.5%(A+AM)
537. 1 CONTINUE
538. RETURN
539. END
‘ 540. C
! 541. c
! 542, o
543, SUBROUTINE INTRP3 (KC,KF}
544. c PERFORMS CUBIC INTERPOLATION
545, IMPLICIT DOUBLE PRECISION (A-H,0-2)
546. COMMON Q(18000),IUF(200),IUC(200)
| 547. CALL KEY(KF,IUF,IIF,JJF,HF)
- 548. CALI KEY(KC,IUC,IIC,JJC,HC)
: 549, c
' 550. c KF KF KC KF
551. c U =3 U +U
552. c KC
! 553. c
} 554, c INTERPOLATE IN COARSE COLUMNS USING COARSE COLUMN DATA
'5 555. Do 20 1C=1,IIC
556. IF=2*IC-1
557. IFO=IUF(IF)
558. ICO=IUC(IC)
559, Q(IFO+1)=0(ICO+1)
560. c FIRST POINT IN COLUMN. USE EQU (6.3)
561. Q(IFO+2)=(5%*Q(ICO+1)+15*Q(ICO+2)~5*Q(ICO+3)+Q(ICO+4))/16
562, JJC2=JJIC~-2
563, DO 10 JC=2,JJC2
564. JF=2*JC-1
565. Q (IFO+JF)=Q(ICO+JC) .
; 566 . C
A 567, c INTERIOR POINT IN COLUMN. USE EQU (6.2)
43 568. Q(IFO+JF+1)=(=Q(ICO+JIC~1)+9*Q (ICO+JC)
}; 569. *  4+9#%Q(ICOH+IC+1)-Q(ICO+IC+2))/16.

570. 10 CONTINUE
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Q(IFO+JJIF-2)=Q(ICO+JJIC-1)
Q(IFO+JIF=1)=(Q(ICOrIIC-3)-5*Q(ICONIIC-2)

LAST POINT IN COLUMN. USE EQU (6.3)
+15%Q (ICO+JJIC-1)+5*Q (ICO+JIC) ) /16
Q(IFO+JJF)=Q (ICO+JIC)

CONTINUE

INTERPOLATE IN INTERMEDIATE FINE COLUMNS
USING ROW DATA

FIRST COLUMN. USE EQU (6.3)
IM1=IUF(1)

I0=IUF(2)

IP1=IUF(3)

IP3=IUF(5)

IP5=IUF(7)

Do 30 J=1,JJF
Q(IO+J)=(5%*Q(IM1+J)+15*Q(IP1+J)
~5%Q(IP3+J)+Q(IP5+J))/16.
CONTINUE

INTERMEDIATE COLUMNS. USE EQU (6.2)

IIF3=I1IF-3

DO 40 I1=4,IIF3,2

IM3=IUF(I-3)

IM1=IUF(I-1)

I0=IUF(I)

IP1=IUF(I+1)

IP3=IUF(I+3)

DO 40 J=1,JJF

Q(IO+T)=(=Q(IM3+J)+9*Q (IM1+J)
+9*Q(IP1+J)-Q(IP3+J))/16.
CONTINUE

LAST COLUMN. USE EQU (6.3)
IMS=IUF(IIF-6)
IM3=IUF(IIF-4)
IM1=IUF(IIF=-2)

I0=IUF(IIF-1)

IP1=IUF(IIF)

DO 50 J=1,JJF .

Q(IO+J)=(Q(IM5+J)=5%*Q (IM3+J)
+15%Q (IM14J )+5*Q (IP1+J))/16
CONTINUE

RETURN

END

SUBROUTINE KEY(K,IST,IMAX,JMAX,HH)

RECOVERS THE INFORMATION ABOUT ARRAY K SET UP BY
THE SUBROUTINE GRDFN.

THE VALUE OF THE GRID FUNCTION AT THE POINT (I,J)
1S ADDRESSED AS U(IST(J)+I).

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON /GRD/NST(20) , IMX (20) ,JMX(20) ,H(20)
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DIMENSION IST(1)
IMAX=IMX(K)
JMAX=JMX (K)
IS=NST(K)-JMAX-1
DO 1 I=1,IMAX
IS=IS + JMAX
IST(I)=IS
HH=H(K)

RETURN

END

SUBROUTINE PUTB(F,K)
INSERTS THE BOUNDARY VALUES OF THE FUNCTION F
EVALUATED AT THE POINTS OF GRID K
INTO THE ARRAY K.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON Q(18000)

DIMENSION IST(200)

CALL KEY (K,IST,I1I,JJ,H)

II1=I1-1

Do 1 J=1,33

X=0.

Y=(J-1)*H

Q(IST(1)+J)=F(X,Y)

X=(II-1)*H

QIST(II)+J)=F(X,Y¥)

CONTINUE

DO 2 I=2,II1

Y=0.

X=(I-1)*H

Q(IST(I)+1)=F(X,Y)

Y=(JJ-1)*H

Q(IST(I)+JJT)=F(X,Y)

CONTINUE

RETURN

END

SUBROUTINE PUTF(K,F,NH)

INSERTS THE VALUES OF THE FUNCTION F
EVALUATED AT THE POINTS OF GRID K
AND MULTIPLIED BY GRIDSIZE**NH

INTO THE ARRAY K.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON Q(18000),IST(600)

CALL KEY (K,IST,II,JJ,H)

H2=H**NH

Do 1 I=1,II

po 1 J=1,JJ0

X=(I-1)*H

Y=(J-1)*H
Q(IST(I)+J)=F(X,Y)*H2

RETURN
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SUBROUTINE PUTU (KF,KC)

THIS SUBROUTINE INJECTS THE SOLUTION ON THE FINE GRID
KF INTO THE COARSE GRID KC.

KC,0 KC KF

U =1 U

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON Q(18000) ,IUF(200),IUC(200)
CALL KEY(KF,IUF,IIF,JJF,HF)

CALL KEY(KC,IUC,IIC,JJC,HC)

DO 1 IC=1,I1IC

IF=2*IC-1

IFO=IUF(IF)

ICO=IUC(IC)

JF=-1

Do 1 JCc=1,33C

JF=JF+2

Q(ICO+JC)= Q(IFOHIF)
CONTINUE

RETURN

END

SUBROUTINE RELAX (K, KRHS,ERR) i
NORMAL RELAXATION

CARRIES OUT ONE GAUSS~SEIDEL PROJECTED

SWEEP ON THE GRID K WITH RIGHT HAND SIDE IN ARRAY KRHS.
RETURNS WITH ERR= G-NORM OF THE DYNAMIC RESIDUALS

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON Q(18000) ,IST(200) ,IRHS(200)
CALL KEY(X,IST,II,JJ,H)

CALL KEY(KRHS,IRHS,II,JJ,H)

I1=1I-1 i
J1=JJ~-1

ERR=0 .

DO 1 I=2,I1

IR=IRHS(I)

IO=IST(I)

IM=IST(I-1)

IP=IST(I+1)

po 1 J=2,J1

A=Q (IR+J)=Q(I0+J+1)=Q(I0+J=1)-Q (IM+J)=Q(IP+J)
QT=-.25*A

QN=MAX(0.0,QT)

ERR=ERR+ (QN=Q (IO+J) ) **2

Q(10+J)=0ON

ERR=SQRT (ERR)/H

RETURN

END

SUBROUTINE RESBW(KF,KRF,KRC)
SAME AS RESSW EXCEPT THAT ONLY THE RHS B IS TREATED
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CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE
IN ARRAY KRF , AND TRANSFERS INTO ARRAY KRC.
BEFORE TRANSFER, THE RESIDUAL IS SCALED

BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE
FACT THAT THE GRID SIZE ON GRID KF IS HALF THE

GRIDSIZE ON GRID KC.

KRC XC KRF

R = 4*S ( B )

KF

COMMON /SWDAT/NFGSW,NINTSW,NRESSW
GOTO (1,2),NRESSW

CALL RESBAL{KF,KRF,KRC)
RETURN

CALL RESBL1 (KF, KRF,KRC)
RETURN
END

SUBROUTINE RESBAL(KF,KRF,KRC)

SAME AS RESCAL EXCEPT THAT ONLY RHS B IS TREATED
CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE
IN ARRAY KRF , AND INJECTS INTO ARRAY KRC.

BEFORE INJECTION, THE RESIDUAL IS SCALED
BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE
FACT THAT THE GRID SIZE ON GRID KF IS HALF THE
GRIDSIZE ON GRID KC.

KRC KC KRF
R = 4%*s (B )

KF

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON Q(18000) ,IUF(200),IRF(200),IRC(200)
CALL KEY(KF,IUF,IIF,JJF,HF)

CALL KEY (KRF,IRF,1IF,JJF,HF)

CALL KEY(KRC,IRC,IIC,JJC,HC)

IIC1=IIC-1

JIC1=JIC~-1

DO 1 1C=2,IIC1

ICR=IRC(IC) _
IF=2*1C-1 ]
JF=1

IFR=IRF(IF)

IFO=IUF(1IF)
1IFM=IUF(IF=-1)
IFP=IUF(IF+1)

po 1 JC=2,JJC1

JF=JF+2
Q(ICR+JC)=4.*(Q(IFR+JF))
RETURN

END

SUBROUTINE RESBL1(KF, XRF,KRC)
SAME AS RESCL1 EXCEPT THAT ONLY RHS B IS TREATED
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MODIFICATION #5 UPDATED JUNE 23 1980

USES WEIGHTED RESIDUALS NEAR THE BOUNDARY
CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE
IN ARRAY KRF , AND INJECTS INTO ARRAY KRC.

BEFORE INJECTION, THE RESIDUAL IS SCALED

BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE
FACT THAT THE GRID SIZE ON GRID KF IS HALF THE
GRIDSIZE ON GRID KC.

KRC KC KRF

R = 4*S (B )

KF

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON Q(18000) ,IUF(200),IRF(200),IRC(200)

DIMENSION R(9)

CALL KEY(KF,IUF,IIF,JJF,HF)

CALL KEY (KRF,IRF,IIF,JJF,HF)

CALL KEY(KRC,IRC,1IC,JJC,HC)

IIC1=IIC-1

JJIC1=JJC-1

DO 1 1C=2,IIC1

ICR=IRC(IC)

IF=2*IC~1

JF=1

IFR=IRF(IF)

IFO=IUF(IF)

IFM=IUF(IF=-1)

IFP=IUF(IF+1)

DO 1 JC=2,JJC1

JF=JF+2

IF(Q(IFO+JF) «EQ.0)GOTO 2

IF(Q(IFP+JF+1)«GT.0 .AND. Q(IFP+JF=1).GT.0 .AND.
Q(IFOHIF+1).GT+0 +AND. Q(IFO+JF-1).GT.0 .AND.
Q(IFM+JF+1) .GT.0 .AND. Q(IFM+JF=-1).GT.0 .AND.
Q(IFMAIF )«GT.0 +AND. Q(IFP+JF ).GT.0 )GOTO 2

N=0

DO 3 It=1,3

I=IF+I1=-2

DO 3 J1=1,3

J=JF+J1=-2

N=N+1

IR=IRF(I)

IO=IUF(I)

IM=IUF(I-1)

IP=IUF(I+1)

S=Q (IR+J)

IF(Q(IOHT).EQ.0)S=0

R(N)=s

CONTINUE

Q(ICRHKIC)=R(5)+.5*(R(2)+R(4)+R(6)+R(8)+
«S*{R(1)+R(3)+R(7)+R(2) ))

GOTO 1

Q(ICR+JC)=4.*Q(IFR+JF)

CONTINUE

RETURN

END
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SUBROUTINE RESSW(KF,KRF,KRC)
CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE
IN ARRAY KRF , AND TRANSFERS INTO ARRAY KRC.
BEFORE TRANSFER, THE RESIDUAL IS SCALED
BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE
FACT THAT THE GRID SIZE ON GRID KF IS HALF THE
GRIDSIZE ON GRID KC.
KRC KC KRF KF KF
R = 4*s (B - A u )
KF

COMMON /SWDAT/NFGSW, NINTSW,NRESSW
GoTO (1,2),NRESSW

CALL RESCAL(KF,KRF,KRC)
RETURN

CALL RESCL1(KF,KRF,KRC)
RETURN
END

SUBROUTINE RESCAL(KF,KRF,KRC)
CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE
IN ARRAY KRF , AND INJECTS INTO ARRAY KRC.
BEFORE INJECTION, THE RESIDUAL IS SCALED
BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE
FACT THAT THE GRID SIZE ON GRID KF IS HALF THE
GRIDSIZE ON GRID KC.
KRC KC KRF KF KF
R = 4*s (B - A U )
KF

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON Q(18000) ,IUF(200),IRF(200),IRC(200)
CALL KEY(KF,IUF,IIF,JJF,HF)

CALL KEY({KRF,IRF,IIF,JJF,HF)

CALL KEY (KRC,IRC,IIC,JJC,HC)

IIC1=IIC-1

JJCc1=3JCc=-1

Do 1 IC=2,IIC1

ICR=IRC(IC)

IF=2*IC-1

JF=1

IFR=IRF(IF)

IFO=IUF(IF)

IFM=IUF(IF-1)

IFP=IUF(IF+1)

DO 1 JC=2,J3C1

JF=JF+2

S=Q (IFO+JF+1)+Q (IFO+JF=1)+Q (IFM+JF)+Q (IFP+JF)
Q(ICR+JC)=4.*(Q(IFR+JF)=S+4.*Q(IFO+JF))
RETURN

END
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SUBROUTINE RESCL1(KF,XRF,KRC)
MODIFICATION #5 UPDATED JUNE 23 1980
USES WEIGHTED RESIDUALS NEAR THE BOUNDARY :
CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE !
IN ARRAY KRF , AND INJECTS INTO ARRAY KRC. i
BEFORE INJECTION, THE RESIDUAL IS SCALED j
BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE 1
FACT THAT THE GRID SIZE ON GRID KF IS HALF THE '
GRIDSIZE ON GRID KC. d
KRC KC KRF KF KF
R = 4*sS (B ~A U )
KF

IMPLICIT DOUBLE PRECISION (A=-H,0-Z) i

COMMON Q(18000) ,IUF(200),IRF(200),IRC(200)

DIMENSION R(9)

CALL XEY(KF,IUF,I1F,JJF,HF)

CALL KEY(XRF,IRF,IIF,JJF,HF)

CALL KEY(KRC,IRC,IIC,JJC,HC)

IIC1=IIC-1

JJC1=JJC-1

DO 1 IC=2,1IIC1

ICR=IRC(IC) 1

IF=2*IC-~1

JP=1

IFR=IRF(IF)

IFO=IUF(IF)

IFM=IUF(IF-1)

IFP=IUF(1IF+1)

DO 1 JC=2,JJC1

JF=JF+2

IF(Q(IFO+JF) «EQ.0)GOTO 2

IF(Q(IFP+JF+1).GT.0 .AND. Q(IFP+JF-1).GT.0 +AND.
Q(IFO+JF+1).GT.0 .AND. Q(IFO+JF-1).GT.0 .AND.
Q(IFM+JF+1).GT-0 OAND. Q(IFM+JF-1).GTOO «AND.
Q(IFM+JF ).GT+0 .AND. Q(IFP+JF ).GT.0 )GOTO 2

N=0 Y

DO 3 I1=1,3 |

I=IF+I1-2

DO 3 J1=1,3

J=JF+J1-2

N=N+1

IR=IRF(I)

I0=IUF(1I)

IM=IUF(I-1)

IP=IUF(I+1)

S=Q (I0+J+1)+Q(I0+J~1)+Q (IM+J)+Q(IP+J)

S=Q(IR+J)+4*Q(10+J)}~S

IF(Q(IO+J).EQ.0)S=0

R(N)=8

CONTINUE

Q(ICR+IC)=R(5)+.5*(R(2)+R(4)+R({(6)+R(8)+
«S*(R(1)+R{(3)+R(7)+R(9) ))

GOTO 1

S=Q (IFO+JF+1)+Q(IFO+JF=1)+Q (IFM+JF)+Q(IFP+JF)

Q(ICR+IC)=4+*(Q(IFR+JF)=S+4.*Q(IFO+JF))

CONTINUE

ey
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1016.
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1024,
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(@]

Q

OO0

10

20
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RETURN
END

SUBROUTINE SOLPRT(K,MPRINT)

NOT TIMED

PRINTS THE ARRAY K ON THE SUBARRAY MPRINT.
IF K<MPRINT, PRINTS ENTIRE ARRAY K

IMPLICIT DOUBLE PRECISION (A-H,0-~Z)
COMMON Q(18000),QTEM(100),IST(600)
TIME=URTIMG(O0)
CALL KEY (MPRINT,IST,IIM,JJ,H)
CALL KEY (XK,IST,II,JJ,H)
INTERV=1
IF(K.GT.MPRINT)INTERV=(II-1)/(IIM=1)
DO 20 J=3J,1,~-INTERV
L=0
DO 10 I=1,1I,INTERV
X AND Y ARE NOT PRINTED HERE, BUT ARE COMPUTED IN
CASE A LATER VERSION NEEDS THEM.
X=(I-1)*H
Y=(J=1)*H
L=L+1
QTEM(L)=Q(IST(I)+J)

CONTINUE
PRINT *,(QTEM(LL),LL=1,L)

CONTINUE
CALL URTIMS(TIME)
RETURN
END

SUBROUTINE SOLRED

NOT TIMED

PUTS ACCURATE SOLUTION INTO GRID NGRSOL
IMPLICIT DOUBLE PRECISION (A=~H,0~2Z)
COMMON Q(18000),ISTA(200),QTEM(600)
COMMON /SOLTAU/M,NGRSOL,PT

COMMON /PRBDAT/Y1,Y¥2,A,R

COMMON /SWDAT/NFGSW,NINTSW,NRESSW
TIME=URTIMG(0)

CALL KEY (NGRSOL,ISTA,IIA,JJA,HA)

GOTO(1,2) ,NFGSW

DAM PROBLEM

ACCURATE SOL IS DOUBLE PRECISION ON GRID M=7
WITH INITIAL GRID 2X3

STORED IN FILE 10.

CONTINUE

MA=7

IIMA=2%*(MA-1)*2+1

INTERV=(IIMA~-1)/(IIA~1)

JIMA=(JJA-1) *INTERV+1

REWIND 10

Q4=
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1000
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DO 20 JA=1,JJIMA
READ(10) (QTEM(IA),IA=1,IIMA)
J=(JA=1) /INTERV+1

IF( (J=1)*INTERV .NE. JA-1 )GOTO 20
po 10 I1=1,IIA

IA=(I-1)*INTERV+1

QO (ISTA(I)+J)=QTEM(IA)

CONTINUE

CONTINUE

GOTO 1000

PROBLEM OF SECTION 5: (5.3) AND (5.4)
EXACT SOLUTION KNOWN
CONTINUE

D=2.5*R

po 30 I=1,IIA
I0=ISTA(I)

Do 25 J=1,JJA
X=(I-1)*HA
Y=(J-1)*HA
A=DMAX1(0.D0,D=-R*X-Y)
B=X+Y

G=A*A* (DCOS(B)+2)
QIO+ )=G

CONTINUE

CONTINUE

GOTO 1000

CONTINUE

CALL URTIMS(TIME)
RETURN

END

SUBROUTINE SUBTRC(KF,KC)
THIS SUBROUTINE COMPUTES THE VALUE INJECTED FROM GRID KF TO
GRID KC AND SUBTRACTS IT FROM THE SOLUTION ON GRID KC.
KC KC KC KF
w =U - I U
KF

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON Q(18000),IUF(200),10C(200)
CALL KEY(KF,IUF,IIF,JJF,HF)

CALL KEY(KC,1UC,IIC,JJC,HC)

po 1 1C=1,IIC

IF=2*IC-1

IFO=IUF(IF)

ICO=IUC(IC)

JF==1

DO 1 JC=1,33C

JF=JF+2
Q(ICO+JC)=Q(ICO+IC)=Q(IFO+JF)
CONTINUE

RETURN

END
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SUBROUTINE TAUCAM(KU,KR, KF, ITAU, TAUGNM)

COMPUTES TAU AND TAU-Z GREEN NORM

UPDATED AUGUST 26 1980

PERFORMS TAU EXTRAPOLATION IF ITAU=1

BY ADDING TAU TO RHS ON GRID

GRID KU CONTAINS U

GRID KR CONTAINS SUM OF FIRST TWO TERMS IN (6.7)
PREVIOUSLY OBTAINED USING RESSW AND CORSRE

GRID KF CONTAINS THIRD BRACKET IN (6.7) PREVIOUSLY
COMPUTED BY RESBW

ITAU IS PARAMETER WHICH DETERMINES WHETHER EXTRAPOLATION
WILL BE PERFORMED

TAUGNM IS RETURNED AS GREEN NORM OF TAU-=Z

K~1 PT K-1 K KK K-1 K-1 K K=-1 K
T = 2 *(4s (B -AU))+ (A I U)=-(4 B))

m——we-= K K K

2**pT-1
IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON Q(18000),IKR(200),IKF(200),IKU(200)
COMMON /SOLTAU/M,NGRSOL, PT ]
CALL KEY (KR,IKR,II,JJ,HK) ‘
CALL KEY(KF,IKF,II,JJ,HK)
CALL KEY(KU,IKU,II,JJ,HK)
A=2 ., ¥*PT/(2.%**PT-1)
TAUGNM=0
II1=II-1 .
JI1=3J-1
DO 1 IK=2,II1
IRK=IKR(IK) .
IFKO=IKF(IK)
I0=IKU(IK)
IM=IKU{IK-1)
IP=IKU(IK+1)
Do 1 JK=2,JJ71
T=Q ( IRK+JK)=Q (IFKO+JK)
T=A*T
IF(Q(IO+JK)+EQ.0)T=0
TAUGNM=TAUGNM+T*T
IF( Q(JK+IO+1).EQ.0 +OR.
Q(IO+IK~1)+.EQ.0 +OR. Q(IM+JK).EQ.0 .OR.
Q(IP+JK).EQ.0) T=0
IF (ITAU.EQ. 1)Q(IRK+JK)=T+Q (IFKO+JK)
CONTINUE
TAUGNM=SQRT { TAUGNM) /HK
RETURN
END
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